The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Blopress     2-ethoxy-3-[[4-[2-(2H- tetrazol-5...

Synonyms: Ratacand, CELEXETIL, candesartan, Blopress (TN), CHEMBL1016, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of candesartan

 

Psychiatry related information on candesartan

 

High impact information on candesartan

  • All of these events are inhibited by the AT1 receptor blocker candesartan [8].
  • Neither swallow-induced axial movements, nor the contraction after transient lower esophageal sphincter relaxations, were influenced by candesartan pretreatment [9].
  • Administration of the AT(1) receptor antagonist candesartan reduced the amplitude of swallow-induced peristaltic contractions and both the length and pressure amplitude of baseline high-pressure zone at the esophagogastric junction [9].
  • Neither an angiotensin-II type 1 (AT1) receptor antagonist, CV-11974, nor angiotensin-I affected beta-AR density [10].
  • In an isolated perfused rat heart preparation, infusion of bosentan (1 micromol/L) for 2 hours inhibited the mechanical stretch-induced increase in BNP mRNA levels in the right atria, whereas an AT1 receptor antagonist, CV-11974 (10 nmol/L), had no effect [11].
 

Chemical compound and disease context of candesartan

 

Biological context of candesartan

  • Pretreatment of cultured cardiomyocytes with 10(-7) mol/L CV-11974 inhibited an increase in [3H]phenylalanine incorporation, MAP kinase activity, and c-fos gene expression induced by stretch of cardiomyocytes [17].
  • CONCLUSIONS: In elderly patients with ISH, antihypertensive treatment based on the ARB candesartan resulted in a significant 42% RR reduction in stroke in comparison with other antihypertensive treatment, despite little difference in blood pressure reduction [12].
  • The candesartan IC50 values for percentage changes in renal blood flow did not differ in the two groups of mice [18].
  • The lower candesartan dose, which did not cause hypotension, elicited substantial increases in RBF and proportionally much greater increases in sodium excretion, revealing the direct renal vasodilation and natriuretic effects of AT1 receptor blockade [19].
  • The effects of AngII on IL-6 release and gene expression were completely blocked by the AngII receptor type 1 (AT1 receptor) antagonist CV-11974 [20].
 

Anatomical context of candesartan

 

Associations of candesartan with other chemical compounds

  • Recent studies with normal rats indicated that systemic administration of the angiotensin II (AngII) type 1 (AT1) receptor blocker candesartan elicited divergent renal hemodynamic and excretory responses depending on the magnitude of associated decreases in mean arterial pressure [19].
  • Neither losartan (1 microM) nor candesartan (1 nM) significantly affected basal NO production, but both of these AT1-receptor blockers markedly blunted NO release in response to AngII (10 nM): 77+/-6% inhibition with losartan (n=8) and 63+/-9% with candesartan (n=8) [25].
  • In contrast, dorsal root ganglia AT1 receptor mRNA content was significantly decreased in RRM (0.52+/-0.06) compared with sham-operated rats (1.18+/-0.07), and this decrease was abolished by ramipril (1.40+/-0.13) and candesartan treatment (1.56+/-0.11) [26].
  • A combination of candesartan, felodipine, and the lipid peroxidation inhibitor H290/51 produced a more pronounced infarct limitation than each of these agents alone [13].
  • It is interesting that both glomerular cell number and glomerulosclerosis were significantly decreased by candesartan and normalized by the addition of probucol [27].
 

Gene context of candesartan

  • Candesartan effectively blocks AT1A and AT1B receptors in renal resistance vessels of rodents, with similar efficacies in rats and mice [18].
  • Administration of candesartan into SKOV-3-transplanted athymic mice resulted in the reduction of peritoneal dissemination, decreased ascitic VEGF concentration, and suppression of tumor angiogenesis [28].
  • Furthermore, candesartan decreased renal tissue Ang II contents (from 216 +/- 19 to 46 +/- 3 fmol/mL) and ERK1/2, JNK, and BMK1 activities (-45%, -60%, and -70%, respectively) in DS/H rats [29].
  • Both candesartan and neutralizing antibody against TGF-beta completely prevented AGEs-induced Smad2 phosphorylation and TGF-beta-inducible promoter activity [30].
  • Furthermore, treatment with candesartan diminished JNK1 activity and downregulated SMAD2 protein and activity in obstructed kidneys [31].
 

Analytical, diagnostic and therapeutic context of candesartan

  • RESULTS: Of the ISH patients, 754 were randomized to the candesartan group and 764 to the control group [12].
  • To evaluate the responses to candesartan in hypertensive rats, experiments were performed 25 d after unilateral renal arterial constriction with a 0.25-mm clip [19].
  • Injections of AngII caused dose-related increases in systemic arterial and in hindquarters perfusion pressure that were reduced by candesartan [32].
  • Blockade of AT1 receptors was achieved by intravenous injection of 0.05 mg/kg candesartan, which did not affect mean arterial pressure [33].
  • The hypertensive rats were randomized to no treatment (n = 8) or treatment with the angiotensin type 1 receptor (AT1R) antagonist candesartan (1 mg/kg per day, n = 10) after the baseline echocardiography study [34].

References

  1. Prophylactic treatment of migraine with an angiotensin II receptor blocker: a randomized controlled trial. Tronvik, E., Stovner, L.J., Helde, G., Sand, T., Bovim, G. JAMA (2003) [Pubmed]
  2. Angiotensin II type 1a receptor is involved in the occurrence of reperfusion arrhythmias. Harada, K., Komuro, I., Hayashi, D., Sugaya, T., Murakami, K., Yazaki, Y. Circulation (1998) [Pubmed]
  3. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Miyajima, A., Kosaka, T., Asano, T., Asano, T., Seta, K., Kawai, T., Hayakawa, M. Cancer Res. (2002) [Pubmed]
  4. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. Koh, K.K., Ahn, J.Y., Han, S.H., Kim, D.S., Jin, D.K., Kim, H.S., Shin, M.S., Ahn, T.H., Choi, I.S., Shin, E.K. J. Am. Coll. Cardiol. (2003) [Pubmed]
  5. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. Lithell, H., Hansson, L., Skoog, I., Elmfeldt, D., Hofman, A., Olofsson, B., Trenkwalder, P., Zanchetti, A. J. Hypertens. (2003) [Pubmed]
  6. Angiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits. De Matteo, R., Head, G.A., Mayorov, D.N. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2006) [Pubmed]
  7. Effects of candesartan on cardiovascular outcomes in Japanese hypertensive patients. Suzuki, H., Kanno, Y. Hypertens. Res. (2005) [Pubmed]
  8. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Zou, Y., Akazawa, H., Qin, Y., Sano, M., Takano, H., Minamino, T., Makita, N., Iwanaga, K., Zhu, W., Kudoh, S., Toko, H., Tamura, K., Kihara, M., Nagai, T., Fukamizu, A., Umemura, S., Iiri, T., Fujita, T., Komuro, I. Nat. Cell Biol. (2004) [Pubmed]
  9. Actions by angiotensin II on esophageal contractility in humans. Casselbrant, A., Edebo, A., Wennerblom, J., Lönroth, H., Helander, H.F., Vieth, M., Lundell, L., Fändriks, L. Gastroenterology (2007) [Pubmed]
  10. Mechanism of beta-adrenergic receptor upregulation induced by ACE inhibition in cultured neonatal rat cardiac myocytes: roles of bradykinin and protein kinase C. Yonemochi, H., Yasunaga, S., Teshima, Y., Iwao, T., Akiyoshi, K., Nakagawa, M., Saikawa, T., Ito, M. Circulation (1998) [Pubmed]
  11. Endothelin-1 is involved in stretch-induced early activation of B-type natriuretic peptide gene expression in atrial but not in ventricular myocytes: acute effects of mixed ET(A)/ET(B) and AT1 receptor antagonists in vivo and in vitro. Magga, J., Vuolteenaho, O., Marttila, M., Ruskoaho, H. Circulation (1997) [Pubmed]
  12. Stroke prevention with the angiotensin II type 1-receptor blocker candesartan in elderly patients with isolated systolic hypertension: the Study on Cognition and Prognosis in the Elderly (SCOPE). Papademetriou, V., Farsang, C., Elmfeldt, D., Hofman, A., Lithell, H., Olofsson, B., Skoog, I., Trenkwalder, P., Zanchetti, A. J. Am. Coll. Cardiol. (2004) [Pubmed]
  13. Effects of the angiotensin AT1 receptor blocker candesartan on myocardial ischemic/reperfusion injury. Shimizu, M., Sjöquist, P.O., Wang, Q.D., Rydén, L. J. Am. Soc. Nephrol. (1999) [Pubmed]
  14. Transcriptional regulation of nephrin gene by peroxisome proliferator-activated receptor-gamma agonist: molecular mechanism of the antiproteinuric effect of pioglitazone. Benigni, A., Zoja, C., Tomasoni, S., Campana, M., Corna, D., Zanchi, C., Gagliardini, E., Garofano, E., Rottoli, D., Ito, T., Remuzzi, G. J. Am. Soc. Nephrol. (2006) [Pubmed]
  15. Long-term dual blockade with candesartan and lisinopril in hypertensive patients with diabetes: the CALM II study. Andersen, N.H., Poulsen, P.L., Knudsen, S.T., Poulsen, S.H., Eiskjaer, H., Hansen, K.W., Helleberg, K., Mogensen, C.E. Diabetes Care (2005) [Pubmed]
  16. Comparative impact of enalapril, candesartan or metoprolol alone or in combination on ventricular remodelling in patients with congestive heart failure. McKelvie, R.S., Rouleau, J.L., White, M., Afzal, R., Young, J.B., Maggioni, A.P., Held, P., Yusuf, S. Eur. Heart J. (2003) [Pubmed]
  17. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Kojima, M., Shiojima, I., Yamazaki, T., Komuro, I., Zou, Z., Wang, Y., Mizuno, T., Ueki, K., Tobe, K., Kadowaki, T. Circulation (1994) [Pubmed]
  18. Effects of candesartan on angiotensin II-induced renal vasoconstriction in rats and mice. Ruan, X., Purdy, K.E., Oliverio, M.I., Coffman, T.M., Arendshorst, W.J. J. Am. Soc. Nephrol. (1999) [Pubmed]
  19. Renal responses of the nonclipped kidney of two-kidney/one-clip Goldblatt hypertensive rats to type 1 angiotensin II receptor blockade with candesartan. Cervenka, L., Navar, L.G. J. Am. Soc. Nephrol. (1999) [Pubmed]
  20. Angiotensin II stimulates interleukin-6 release from cultured mouse mesangial cells. Moriyama, T., Fujibayashi, M., Fujiwara, Y., Kaneko, T., Xia, C., Imai, E., Kamada, T., Ando, A., Ueda, N. J. Am. Soc. Nephrol. (1995) [Pubmed]
  21. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Yamazaki, T., Komuro, I., Kudoh, S., Zou, Y., Shiojima, I., Mizuno, T., Takano, H., Hiroi, Y., Ueki, K., Tobe, K. Circ. Res. (1995) [Pubmed]
  22. Intrarenal angiotensin II generation and renal effects of AT1 receptor blockade. Navar, L.G., Harrison-Bernard, L.M., Imig, J.D., Wang, C.T., Cervenka, L., Mitchell, K.D. J. Am. Soc. Nephrol. (1999) [Pubmed]
  23. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. Nagase, M., Yoshida, S., Shibata, S., Nagase, T., Gotoda, T., Ando, K., Fujita, T. J. Am. Soc. Nephrol. (2006) [Pubmed]
  24. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. Kumagai, K., Nakashima, H., Urata, H., Gondo, N., Arakawa, K., Saku, K. J. Am. Coll. Cardiol. (2003) [Pubmed]
  25. AT1 receptor inhibition blunts angiotensin II-stimulated nitric oxide release in renal arteries. Thorup, C., Kornfeld, M., Goligorsky, M.S., Moore, L.C. J. Am. Soc. Nephrol. (1999) [Pubmed]
  26. Reciprocal role of the AT1 receptor in modulating renal and neuronal AT1 mRNA expression. Li, J., Zhao, H., Dipette, D.J., Supowit, S.C., Wang, D.H. J. Am. Soc. Nephrol. (1999) [Pubmed]
  27. Addition of the antioxidant probucol to angiotensin II type I receptor antagonist arrests progressive mesangioproliferative glomerulonephritis in the rat. Kondo, S., Shimizu, M., Urushihara, M., Tsuchiya, K., Yoshizumi, M., Tamaki, T., Nishiyama, A., Kawachi, H., Shimizu, F., Quinn, M.T., Lambeth, D.J., Kagami, S. J. Am. Soc. Nephrol. (2006) [Pubmed]
  28. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Suganuma, T., Ino, K., Shibata, K., Kajiyama, H., Nagasaka, T., Mizutani, S., Kikkawa, F. Clin. Cancer Res. (2005) [Pubmed]
  29. Effects of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitive rats. Nishiyama, A., Yoshizumi, M., Rahman, M., Kobori, H., Seth, D.M., Miyatake, A., Zhang, G.X., Yao, L., Hitomi, H., Shokoji, T., Kiyomoto, H., Kimura, S., Tamaki, T., Kohno, M., Abe, Y. Kidney Int. (2004) [Pubmed]
  30. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. Fukami, K., Ueda, S., Yamagishi, S., Kato, S., Inagaki, Y., Takeuchi, M., Motomiya, Y., Bucala, R., Iida, S., Tamaki, K., Imaizumi, T., Cooper, M.E., Okuda, S. Kidney Int. (2004) [Pubmed]
  31. AT1A-mediated activation of kidney JNK1 and SMAD2 in obstructive uropathy: preservation of kidney tissue mass using candesartan. Wamsley-Davis, A., Padda, R., Truong, L.D., Tsao, C.C., Zhang, P., Sheikh-Hamad, D. Am. J. Physiol. Renal Physiol. (2004) [Pubmed]
  32. The influence of candesartan and PD123319 on responses to angiotensin II in the hindquarters vascular bed of the rat. Champion, H.C., Bivalacqua, T.J., Lambert, D.G., McNamara, D.B., Kadowitz, P.J. J. Am. Soc. Nephrol. (1999) [Pubmed]
  33. Candesartan normalizes exaggerated tubuloglomerular feedback activity in young spontaneously hypertensive rats. Brännström, K., Morsing, P., Arendshorst, W.J. J. Am. Soc. Nephrol. (1999) [Pubmed]
  34. Renin angiotensin system-dependent hypertrophy as a contributor to heart failure in hypertensive rats: different characteristics from renin angiotensin system-independent hypertrophy. Sakata, Y., Masuyama, T., Yamamoto, K., Doi, R., Mano, T., Kuzuya, T., Miwa, T., Takeda, H., Hori, M. J. Am. Coll. Cardiol. (2001) [Pubmed]
 
WikiGenes - Universities