The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Lepidoptera

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lepidoptera

 

High impact information on Lepidoptera

  • Using maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera, we have demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding [6].
  • Here we show that cytochrome c oxidase I DNA barcodes effectively discriminate among species in three Lepidoptera families from Area de Conservación Guanacaste in northwestern Costa Rica [7].
  • Desaturation of coenzyme-A esters of saturated fatty acids is a common feature of sex pheromone biosynthetic pathways in the Lepidoptera [8].
  • The moth Utetheisa ornatrix (Lepidoptera: Arctiidae) is protected against predation by pyrrolizidine alkaloids that it sequesters as a larva from its foodplants [9].
  • Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae) [10].
 

Chemical compound and disease context of Lepidoptera

 

Biological context of Lepidoptera

  • A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera [6].
  • Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-alpha: karyotype diversification and species radiation [16].
  • This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera [17].
  • We have selected heliomicin, a broad spectrum antifungal CS alpha beta peptide from Lepidoptera as the starting point of a lead optimization program based on phylogenic exploration and fine tuned mutagenesis [18].
  • Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial COI gene and control region [19].
 

Anatomical context of Lepidoptera

 

Associations of Lepidoptera with chemical compounds

  • A nuclear gene for higher level phylogenetics: phosphoenolpyruvate carboxykinase tracks mesozoic-age divergences within Lepidoptera (Insecta) [25].
  • Within the insect clade, four methionine-rich proteins, four arylphorins, and two juvenile hormone-suppressible proteins from Lepidoptera, as well as two dipteran proteins, form four separate groups [26].
  • One of them, ethylene signaling, increases susceptibility of Arabidopsis to the generalist herbivore Egyptian cotton worm (Spodoptera littoralis; Lepidoptera: Noctuidae) [27].
  • Ecdysone seems to be the optimal substrate (kcat/Km=7101.1), whereas 3-dehydroecdysone, an ecdysone precursor in Lepidoptera, is seven times less favourable (kcat/Km=1085.7) [28].
  • All of the sphingomyelins were associated with their doubly unsaturated sphingosine, tetradecasphing-4,6-dienine (compound 2), which contained the same set of fatty acids as compound 1 and represents a novel set of sphingomyelins not previously reported in Lepidoptera [29].
 

Gene context of Lepidoptera

  • The inferred branching patterns of the LW opsin gene family phylogeny indicate at least one early gene duplication within insects before the emergence of the orders Orthoptera, Mantodea, Hymenoptera, Lepidoptera, and Diptera [30].
  • Analysis of 19 insect cecropin genes identifies a common ancestral Cecropin before the divergence of Diptera and Lepidoptera [31].
  • These findings have implications for the identification of critical structural features of E75 and also suggest that E75 has a conserved function and a shared ligand in Lepidoptera [32].
  • We examined the nature of this diversity for the first time by analyzing sequences of cDNAs encoding two ferritin subunits from one species, Calpodes ethlius (Lepidoptera, Hesperiidae) [33].
  • CONCLUSIONS: These data suggest that Dll function, suppressed in the abdomen early in insect evolution, has been derepressed in Lepidoptera, and also suggest that there is a common mechanism underlying the formation of all insect appendages [34].
 

Analytical, diagnostic and therapeutic context of Lepidoptera

References

  1. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. Corzo, G., Gilles, N., Satake, H., Villegas, E., Dai, L., Nakajima, T., Haupt, J. FEBS Lett. (2003) [Pubmed]
  2. Characterization of human lactoferrin produced in the baculovirus expression system. Salmon, V., Legrand, D., Georges, B., Slomianny, M.C., Coddeville, B., Spik, G. Protein Expr. Purif. (1997) [Pubmed]
  3. Effects of Serratia marcescens on the F1 generation of laboratory-reared Heliothis virescens (Lepidoptera: Noctuidae). Inglis, G.D., Lawrence, A.M. J. Econ. Entomol. (2001) [Pubmed]
  4. Relative effectiveness of selected stilbene optical brighteners as enhancers of the beet armyworm (Lepidoptera: Noctuidae) nuclear polyhedrosis virus. Shapiro, M., Argauer, R. J. Econ. Entomol. (2001) [Pubmed]
  5. Reconstruction of Bacillus thuringiensis ssp. israelensis Cry11A endotoxin from fragments corresponding to its N- and C-moieties restores its original biological activity. Revina, L.P., Kostina, L.I., Ganushkina, L.A., Mikhailova, A.L., Zalunin, I.A., Chestukhina, G.G. Biochemistry Mosc. (2004) [Pubmed]
  6. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Pechan, T., Ye, L., Chang, Y., Mitra, A., Lin, L., Davis, F.M., Williams, W.P., Luthe, D.S. Plant Cell (2000) [Pubmed]
  7. DNA barcodes distinguish species of tropical Lepidoptera. Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., Hebert, P.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Cloning and functional expression of a cDNA encoding a pheromone gland-specific acyl-CoA Delta11-desaturase of the cabbage looper moth, Trichoplusia ni. Knipple, D.C., Rosenfield, C.L., Miller, S.J., Liu, W., Tang, J., Ma, P.W., Roelofs, W.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. The chemistry of sexual selection. Eisner, T., Meinwald, J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  10. Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Schulz, S., Francke, W., Boppré, M., Eisner, T., Meinwald, J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Toxicity and residual activity of methoxyfenozide and tebufenozide to codling moth (Lepidoptera: Tortricidae) and oriental fruit moth (Lepidoptera: Tortricidae). Borchert, D.M., Walgenbach, J.F., Kennedy, G.G., Long, J.W. J. Econ. Entomol. (2004) [Pubmed]
  12. Toxicity, penetration, tissue distribution, and metabolism of methyl parathion in Helicoverpa armigera and H. punctigera (Lepidoptera: Noctuidae). Gunning, R.V., Ferris, I.G., Easton, C.S. J. Econ. Entomol. (1994) [Pubmed]
  13. Toxicity of pyrethroids and effect of synergists to larval and adult Helicoverpa zea, Spodoptera frugiperda, and Agrotis ipsilon (Lepidoptera: Noctuidae). Usmani, K.A., Knowles, C.O. J. Econ. Entomol. (2001) [Pubmed]
  14. Toxicities of emamectin benzoate homologues and photodegradates to Lepidoptera. Argentine, J.A., Jansson, R.K., Starner, V.R., Halliday, W.R. J. Econ. Entomol. (2002) [Pubmed]
  15. Nitric oxide production by hemocytes of larva and pharate prepupa of Galleria mellonella in response to bacterial lipopolysaccharide: Cytoprotective or cytotoxic? Krishnan, N., Hyrsl, P., Simek, V. Comp. Biochem. Physiol. C Toxicol. Pharmacol. (2006) [Pubmed]
  16. Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-alpha: karyotype diversification and species radiation. Kandul, N.P., Lukhtanov, V.A., Dantchenko, A.V., Coleman, J.W., Sekercioglu, C.H., Haig, D., Pierce, N.E. Syst. Biol. (2004) [Pubmed]
  17. Synthesis and binding affinity of an iodinated juvenile hormone. Prestwich, G.D., Eng, W.S., Robles, S., Vogt, R.G., Wiśniewski, J.R., Wawrzeńczyk, C. J. Biol. Chem. (1988) [Pubmed]
  18. Lead optimization of antifungal peptides with 3D NMR structures analysis. Landon, C., Barbault, F., Legrain, M., Menin, L., Guenneugues, M., Schott, V., Vovelle, F., Dimarcq, J.L. Protein Sci. (2004) [Pubmed]
  19. Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial COI gene and control region. Vandewoestijne, S., Baguette, M., Brakefield, P.M., Saccheri, I.J. Mol. Phylogenet. Evol. (2004) [Pubmed]
  20. The regular divisions of the spermatocytes as related to a meiotic lysine-rich protein fraction. A study on the dichotomous male meiosis of Lepidoptera. Friedländer, M., Hauschteck-Jungen, E. Chromosoma (1982) [Pubmed]
  21. Identification and distribution of a proctolin-like neuropeptide in the nervous system of the gypsy moth, Lymantria dispar, and in other Lepidoptera. Davis, N.T., Velleman, S.G., Kingan, T.G., Keshishian, H. J. Comp. Neurol. (1989) [Pubmed]
  22. Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. Rogers, M.E., Krieger, J., Vogt, R.G. J. Neurobiol. (2001) [Pubmed]
  23. L- and D-alanine transport in brush border membrane vesicles from lepidopteran midgut: evidence for two transport systems. Hanozet, G.M., Giordana, B., Parenti, P., Guerritore, A. J. Membr. Biol. (1984) [Pubmed]
  24. Chloride transport across the integumentary epithelium of Manduca sexta (Lepidoptera: Sphingidae). Cooper, P.D., Jungreis, A.M. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. (1985) [Pubmed]
  25. A nuclear gene for higher level phylogenetics: phosphoenolpyruvate carboxykinase tracks mesozoic-age divergences within Lepidoptera (Insecta). Friedlander, T.P., Regier, J.C., Mitter, C., Wagner, D.L. Mol. Biol. Evol. (1996) [Pubmed]
  26. Evolution of arthropod hemocyanins and insect storage proteins (hexamerins). Beintema, J.J., Stam, W.T., Hazes, B., Smidt, M.P. Mol. Biol. Evol. (1994) [Pubmed]
  27. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Stotz, H.U., Pittendrigh, B.R., Kroymann, J., Weniger, K., Fritsche, J., Bauke, A., Mitchell-Olds, T. Plant Physiol. (2000) [Pubmed]
  28. Purification and kinetic analysis of a baculovirus ecdysteroid UDP-glucosyltransferase. Evans, O.P., O'reilly, D.R. Biochem. J. (1998) [Pubmed]
  29. Presence of unsaturated sphingomyelins and changes in their composition during the life cycle of the moth Manduca sexta. Abeytunga, D.T., Glick, J.J., Gibson, N.J., Oland, L.A., Somogyi, A., Wysocki, V.H., Polt, R. J. Lipid Res. (2004) [Pubmed]
  30. Early duplication and functional diversification of the opsin gene family in insects. Spaethe, J., Briscoe, A.D. Mol. Biol. Evol. (2004) [Pubmed]
  31. Identification and characterization of the Cecropin antibacterial protein gene locus in Drosophila virilis. Zhou, X., Nguyen, T., Kimbrell, D.A. J. Mol. Evol. (1997) [Pubmed]
  32. The E75 gene of Manduca sexta and comparison with its Drosophila homolog. Segraves, W.A., Woldin, C. Insect Biochem. Mol. Biol. (1993) [Pubmed]
  33. Secreted ferritin subunits are of two kinds in insects molecular cloning of cDNAs encoding two major subunits of secreted ferritin from Calpodes ethlius. Nichol, H., Locke, M. Insect Biochem. Mol. Biol. (1999) [Pubmed]
  34. The role of the Distal-less gene in the development and evolution of insect limbs. Panganiban, G., Nagy, L., Carroll, S.B. Curr. Biol. (1994) [Pubmed]
  35. Novel insecticidal toxins from the venom of the spider Segestria florentina. Lipkin, A., Kozlov, S., Nosyreva, E., Blake, A., Windass, J.D., Grishin, E. Toxicon (2002) [Pubmed]
  36. The African yam bean seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of the legume pod borer. Machuka, J.S., Okeola, O.G., Chrispeels, M.J., Jackai, L.E. Phytochemistry (2000) [Pubmed]
  37. Species diagnosis and Bacillus thuringiensis resistance monitoring of Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) field strains from the southern United States using feeding disruption bioassays. Bailey, W.D., Brownie, C., Bacheler, J.S., Gould, F., Kennedy, G.G., Sorenson, C.E., Roe, R.M. J. Econ. Entomol. (2001) [Pubmed]
 
WikiGenes - Universities