The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ABF1  -  Abf1p

Saccharomyces cerevisiae S288c

Synonyms: ARS-binding factor 1, BAF1, Bidirectionally acting factor 1, DNA replication enhancer-binding protein OBF1, OBF1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ABF1


High impact information on ABF1

  • Using PBMs, we identified the DNA binding-site sequence specificities of the yeast transcription factors Abf1, Rap1 and Mig1 [3].
  • In addition to previously identified targets, Abf1, Rap1 and Mig1 bound to 107, 90 and 75 putative new target intergenic regions, respectively, many of which were upstream of previously uncharacterized open reading frames [3].
  • We determined that one such transcription factor, Abf1 (refs. 8-10), associates with Yra1 [4].
  • In the postreplicative state, genomic footprints closely resemble those produced in vitro by the purified ORC and ABF1 proteins, indicating that the binding of these proteins to replication origins is not sufficient to drive the initiation of DNA replication [5].
  • The predicted amino acid sequence contains a novel sequence motif related to the zinc finger, and the ABF1 protein requires zinc and unmodified cysteine residues for sequence-specific DNA binding [6].

Biological context of ABF1


Anatomical context of ABF1

  • B-Cell coactivator OBF-1 exhibits unusual transcriptional properties and functions in a DNA-bound Oct-1-dependent fashion [11].

Associations of ABF1 with chemical compounds


Physical interactions of ABF1

  • Interestingly, an ABF1-binding site can also functionally replace the ILV1 REB1-binding site [16].
  • We found that overexpression of Abf1p in a yeast cell increased transcription of the TBP-encoding gene and that this stimulation depended upon the exact sequence of the Abf1p binding site (ABF1) present in the gene [17].
  • The ABF1 binding sites also acted in an orientation-independent manner when a synthetic ABF1 binding site was inserted into the yeast CYC1 gene lacking its transcriptional activation region [10].
  • Site-directed mutagenesis of Abf1p binding sites in the ACS1 promoter significantly reduced gene expression in the ume6 mutant, grown under repressing conditions [18].
  • Both in the natural rpL45 promoter and in the reconstituted promoter, a Rap1 binding site could functionally replace the Abf1 binding site [19].

Regulatory relationships of ABF1

  • ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae [8].
  • The expression of ADH1 was activated synergistically by both ABF1 binding sites [10].
  • The ARO3 gene is (i) activated through a sequence element which binds the multifunctional DNA-binding protein ABF1 in vitro and (ii) repressed through an URS1 element, which binds the same protein in vitro as the URS1 element in the CAR1 promoter [20].
  • Our results indicate that ABF1 may be involved in the transcriptional control of the yeast tryptophan permease gene [21].
  • The SMK1 promoter contains an upstream activating sequence (UASS) that specifically interacts with the transcriptional activator Abf1p [22].

Other interactions of ABF1


Analytical, diagnostic and therapeutic context of ABF1


  1. Sequence, expression and mutational analysis of BAF1, a transcriptional activator and ARS1-binding protein of the yeast Saccharomyces cerevisiae. Halfter, H., Kavety, B., Vandekerckhove, J., Kiefer, F., Gallwitz, D. EMBO J. (1989) [Pubmed]
  2. The yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA that is required for nucleotide excision repair. Yu, S., Owen-Hughes, T., Friedberg, E.C., Waters, R., Reed, S.H. DNA Repair (Amst.) (2004) [Pubmed]
  3. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Mukherjee, S., Berger, M.F., Jona, G., Wang, X.S., Muzzey, D., Snyder, M., Young, R.A., Bulyk, M.L. Nat. Genet. (2004) [Pubmed]
  4. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Hieronymus, H., Silver, P.A. Nat. Genet. (2003) [Pubmed]
  5. Two steps in the assembly of complexes at yeast replication origins in vivo. Diffley, J.F., Cocker, J.H., Dowell, S.J., Rowley, A. Cell (1994) [Pubmed]
  6. Similarity between the transcriptional silencer binding proteins ABF1 and RAP1. Diffley, J.F., Stillman, B. Science (1989) [Pubmed]
  7. Dissection of a carboxy-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Hardy, C.F., Balderes, D., Shore, D. Mol. Cell. Biol. (1992) [Pubmed]
  8. ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae. Silve, S., Rhode, P.R., Coll, B., Campbell, J., Poyton, R.O. Mol. Cell. Biol. (1992) [Pubmed]
  9. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Yarragudi, A., Miyake, T., Li, R., Morse, R.H. Mol. Cell. Biol. (2004) [Pubmed]
  10. Transcriptional control of the Saccharomyces cerevisiae ADH1 gene by autonomously replicating sequence binding factor 1. Yoo, H.Y., Jung, S.Y., Kim, Y.H., Kim, J., Jung, G., Rho, H.M. Curr. Microbiol. (1995) [Pubmed]
  11. B-Cell coactivator OBF-1 exhibits unusual transcriptional properties and functions in a DNA-bound Oct-1-dependent fashion. Krapp, A., Strubin, M. Mol. Cell. Biol. (1999) [Pubmed]
  12. Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Blanchin-Roland, S., Cordero Otero, R.R., Gaillardin, C. Mol. Cell. Biol. (1994) [Pubmed]
  13. Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing. Miyake, T., Loch, C.M., Li, R. Mol. Cell. Biol. (2002) [Pubmed]
  14. Contacts of the ABF1 protein of Saccharomyces cerevisiae with a DNA binding site at MATa. McBroom, L.D., Sadowski, P.D. J. Biol. Chem. (1994) [Pubmed]
  15. In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae. Beinoraviciūte-Kellner, R., Lipps, G., Krauss, G. FEBS Lett. (2005) [Pubmed]
  16. A REB1-binding site is required for GCN4-independent ILV1 basal level transcription and can be functionally replaced by an ABF1-binding site. Remacle, J.E., Holmberg, S. Mol. Cell. Biol. (1992) [Pubmed]
  17. Genetic tests of the role of Abf1p in driving transcription of the yeast TATA box bindng protein-encoding gene, SPT15. Schroeder, S.C., Weil, P.A. J. Biol. Chem. (1998) [Pubmed]
  18. Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6. Kratzer, S., Schüller, H.J. Mol. Microbiol. (1997) [Pubmed]
  19. Transcription activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p. Gonçalves, P.M., Griffioen, G., Minnee, R., Bosma, M., Kraakman, L.S., Mager, W.H., Planta, R.J. Nucleic Acids Res. (1995) [Pubmed]
  20. Activation and repression of the yeast ARO3 gene by global transcription factors. Künzler, M., Springer, C., Braus, G.H. Mol. Microbiol. (1995) [Pubmed]
  21. Isolation and characterization of Saccharomyces cerevisiae SAB2, a suppressor gene for temperature-sensitive phenotype of ARS-binding factor 1 mutant. Shin, Y.H., Goo, D.M., So, I.S., Rhode, P.R., Campbell, J.L., Kim, J. Biochem. Mol. Biol. Int. (1996) [Pubmed]
  22. Transcriptional regulation of the SMK1 mitogen-activated protein kinase gene during meiotic development in Saccharomyces cerevisiae. Pierce, M., Wagner, M., Xie, J., Gailus-Durner, V., Six, J., Vershon, A.K., Winter, E. Mol. Cell. Biol. (1998) [Pubmed]
  23. Regulation of yeast COX6 by the general transcription factor ABF1 and separate HAP2- and heme-responsive elements. Trawick, J.D., Kraut, N., Simon, F.R., Poyton, R.O. Mol. Cell. Biol. (1992) [Pubmed]
  24. Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae. Kang, J.J., Yokoi, T.J., Holland, M.J. J. Biol. Chem. (1995) [Pubmed]
  25. Molecular cloning and characterization of the Saccharomyces cerevisiae SAB1 gene that suppresses a temperature-sensitive phenotype of the ARS-binding factor 1 mutant. So, I.S., Rhode, P.R., Campbell, J.L., Kim, J. Mol. Cells (1997) [Pubmed]
  26. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1. Cho, G., Kim, J., Rho, H.M., Jung, G. Nucleic Acids Res. (1995) [Pubmed]
  27. Structure and expression of the ABF1-regulated ribosomal protein S33 gene in Kluyveromyces. Hoekstra, R., Ferreira, P.M., Bootsman, T.C., Mager, W.H., Planta, R.J. Yeast (1992) [Pubmed]
WikiGenes - Universities