The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

GMPS  -  guanine monphosphate synthase

Homo sapiens

Synonyms: GMP synthetase, Glutamine amidotransferase
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of GMPS


High impact information on GMPS

  • Similar to USP7, mutations in GMPS acted as enhancers of Pc in vivo [6].
  • It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine [7].
  • The NTD shares striking structural similarity with the ATP-pyrophosphatase domain of GMP synthetase, which reminds us of the two-step reaction by TilS: adenylation of C34 and lysine attack on the C2 carbon [8].
  • GMPS is the first partner gene of MLL on chromosome 3q and the first gene of this type in leukemia-associated translocations [1].
  • CTP synthetase activity was inhibited in a time-dependent fashion by greater than 75% in seven of 13 evaluable courses; GMP synthetase was similarly inhibited in only three of ten cases [9].

Chemical compound and disease context of GMPS


Biological context of GMPS


Anatomical context of GMPS


Associations of GMPS with chemical compounds

  • 4. (Rp)-8-bromo-PET-cyclic GMPS was not hydrolysed by the cyclic GMP specific phosphodiesterase (PDE) type V from bovine aorta but potently inhibited this PDE [13].
  • In addition to discussing a possible mechanism for coupling reactions that involve GMPS and disulfides, we also indicate conditions that are likely to be optimal for modification of the nucleophilic sulfur in 5'-GMPS-primed RNAs [17].
  • (Rp)-8-bromo-PET-cyclic GMPS (3 microM) shifted the vasoconstriction response to the right without affecting stimulation evoked tritium overflow [13].
  • 8. The results obtained indicate that (Rp)-8-bromo-PET-cyclic GMPS presently is the most potent and selective inhibitor of PKG and is helpful in distinguishing between cyclic GMP and cyclic AMP messenger pathways activation [13].
  • GMP synthetase (EC is an amidotransferase that catalyzes the amination of xanthosine 5'-monophosphate to form GMP in the presence of glutamine and ATP [14].

Other interactions of GMPS


Analytical, diagnostic and therapeutic context of GMPS


  1. t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (GUANOSINE 5' MONOPHOSPHATE SYNTHETASE) gene. Pegram, L.D., Megonigal, M.D., Lange, B.J., Nowell, P.C., Rowley, J.D., Rappaport, E.F., Felix, C.A. Blood (2000) [Pubmed]
  2. Human GMP synthetase. Protein purification, cloning, and functional expression of cDNA. Hirst, M., Haliday, E., Nakamura, J., Lou, L. J. Biol. Chem. (1994) [Pubmed]
  3. Studies with GMP synthetase from Ehrlich ascites cells. Purification, properties, and interactions with nucleotide analogs. Spector, T. J. Biol. Chem. (1975) [Pubmed]
  4. High-level production from a baculovirus expression system and biochemical characterization of human GMP synthetase. Lou, L., Nakamura, J., Tsing, S., Nguyen, B., Chow, J., Straub, K., Chan, H., Barnett, J. Protein Expr. Purif. (1995) [Pubmed]
  5. Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain. Bellinzoni, M., Buroni, S., Pasca, M.R., Guglierame, P., Arcesi, F., De Rossi, E., Riccardi, G. Res. Microbiol. (2005) [Pubmed]
  6. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. van der Knaap, J.A., Kumar, B.R., Moshkin, Y.M., Langenberg, K., Krijgsveld, J., Heck, A.J., Karch, F., Verrijzer, C.P. Mol. Cell (2005) [Pubmed]
  7. Structure of a bacterial pyridoxal 5'-phosphate synthase complex. Strohmeier, M., Raschle, T., Mazurkiewicz, J., Rippe, K., Sinning, I., Fitzpatrick, T.B., Tews, I. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Nakanishi, K., Fukai, S., Ikeuchi, Y., Soma, A., Sekine, Y., Suzuki, T., Nureki, O. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. Biochemical assessment of the effects of acivicin and dipyridamole given as a continuous 72-hour intravenous infusion. Fischer, P.H., Willson, J.K., Risueno, C., Tutsch, K., Bruggink, J., Ranhosky, A., Trump, D.L. Cancer Res. (1988) [Pubmed]
  10. Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase. Zalkin, H., Argos, P., Narayana, S.V., Tiedeman, A.A., Smith, J.M. J. Biol. Chem. (1985) [Pubmed]
  11. Molecular modeling and site-directed mutagenesis define the catalytic motif in human gamma -glutamyl hydrolase. Chave, K.J., Auger, I.E., Galivan, J., Ryan, T.J. J. Biol. Chem. (2000) [Pubmed]
  12. On the structure of hisH: protein structure prediction in the context of structural and functional genomics. O'Donoghue, P., Amaro, R.E., Luthey-Schulten, Z. J. Struct. Biol. (2001) [Pubmed]
  13. Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS. Butt, E., Pöhler, D., Genieser, H.G., Huggins, J.P., Bucher, B. Br. J. Pharmacol. (1995) [Pubmed]
  14. The glutamine hydrolysis function of human GMP synthetase. Identification of an essential active site cysteine. Nakamura, J., Straub, K., Wu, J., Lou, L. J. Biol. Chem. (1995) [Pubmed]
  15. Biochemical characterization of human GMP synthetase. Nakamura, J., Lou, L. J. Biol. Chem. (1995) [Pubmed]
  16. Human GMP synthetase. Page, T., Bakay, B., Nyhan, W.L. Int. J. Biochem. (1984) [Pubmed]
  17. Kinetics of coupling reactions that generate monothiophosphate disulfides: implications for modification of RNAs. Wu, C.W., Eder, P.S., Gopalan, V., Behrman, E.J. Bioconjug. Chem. (2001) [Pubmed]
  18. The crystal structure of DJ-1, a protein related to male fertility and Parkinson's disease. Honbou, K., Suzuki, N.N., Horiuchi, M., Niki, T., Taira, T., Ariga, H., Inagaki, F. J. Biol. Chem. (2003) [Pubmed]
  19. Specificity determining residues in ammonia- and glutamine-dependent carbamoyl phosphate synthetases. Saeed-Kothe, A., Powers-Lee, S.G. J. Biol. Chem. (2002) [Pubmed]
  20. Gain of glutaminase function in mutants of the ammonia-specific frog carbamoyl phosphate synthetase. Saeed-Kothe, A., Powers-Lee, S.G. J. Biol. Chem. (2003) [Pubmed]
WikiGenes - Universities