The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

xanthosine     9-[(2R,3R,4S,5R)-3,4- dihydroxy-5...

Synonyms: CHEMBL402439, SureCN133792, SureCN188120, AG-J-03212, CHEBI:18107, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of xanthosine

 

High impact information on xanthosine

  • To measure the GTPase activity of Rab5 in endocytic membrane fusion, we engineered a mutant that preferentially binds xanthosine 5'-triphosphate (XTP),Rab5(D136N) and monitored the kinetics of [alpha(32)P]-XTP hydrolysis in situ during endosome fusion in vitro [6].
  • Substitution of Asp138 with Asn in EF-Tu changed the substrate specificity from GTP to xanthosine triphosphate and demonstrated that the EF-Tu-mediated reactions involved the hydrolysis of two nucleotide triphosphates for each Phe incorporated [7].
  • The recombinant molecules existed as stable plasmids within the cell and contained genes for colicin E1 immunity and the guaA enzyme (xanthosine 5'-monophosphate aminase) together with a part of the lambda genome, R through J: (R-A-F-J)+ [8].
  • Evidence for the involvement of cytosolic 5'-nucleotidase (cN-II) in the synthesis of guanine nucleotides from xanthosine [9].
  • At the optimal pH of 10.0, recombinant hITPase hydrolyzed ITP, dITP, and xanthosine 5'-triphosphate to their respective monophosphates whereas activity with other nucleoside triphosphates was low [10].
 

Chemical compound and disease context of xanthosine

 

Biological context of xanthosine

 

Anatomical context of xanthosine

  • The mutant protein forms a stable complex with Phe-tRNA and xanthosine 5'-triphosphate, which binds to ribosomes, whereas it does not form a complex with Phe-tRNA and GTP (10 microM) [18].
  • The properties of two Xs-derived cell lines, Lig-8 and Lig-13, are described in detail and compared to properties of adult rat hepatic cell lines derived without Xs supplementation [19].
  • We used Xs supplementation to derive clonal epithelial cell lines from adult rat liver that have properties of adult hepatic stem cells [19].
  • The remarkable features of this assay are its simple erythrocyte separation/haemolysis and assay conditions and a distinct segregation of xanthosine 5'-monophosphate (XMP) from the clear supernatant after precipitation [20].
 

Associations of xanthosine with other chemical compounds

 

Gene context of xanthosine

 

Analytical, diagnostic and therapeutic context of xanthosine

  • The formation of xanthosine 5'-monophosphate (XMP) was determined by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection [29].
  • The stability constants of the mixed-ligand complexes formed between Cu(Arm)(2+) [Arm = 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen)], and the di- or trianion of xanthosine 5'-monophosphoric acid [= XMP(2-) or (XMP - H)(3-)] were determined by potentiometric pH titration in aqueous solution (25 degrees C; I = 0.1 M, NaNO(3)) [30].

References

  1. Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene. Dandanell, G., Szczepanowski, R.H., Kierdaszuk, B., Shugar, D., Bochtler, M. J. Mol. Biol. (2005) [Pubmed]
  2. Active site plasticity of endonuclease V from Salmonella typhimurium. Feng, H., Klutz, A.M., Cao, W. Biochemistry (2005) [Pubmed]
  3. RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note. Niwa, T., Takeda, N., Yoshizumi, H. Kidney Int. (1998) [Pubmed]
  4. Isolation and characterization of mutations in the Escherichia coli regulatory protein XapR. Jørgensen, C., Dandanell, G. J. Bacteriol. (1999) [Pubmed]
  5. Induction of Bacillus subtilis sporulation by nucleosides: inosine appears to be sporogen. Sekar, V., Wilson, S.P., Hageman, J.H. J. Bacteriol. (1981) [Pubmed]
  6. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Rybin, V., Ullrich, O., Rubino, M., Alexandrov, K., Simon, I., Seabra, M.C., Goody, R., Zerial, M. Nature (1996) [Pubmed]
  7. Toward a model for the interaction between elongation factor Tu and the ribosome. Weijland, A., Parmeggiani, A. Science (1993) [Pubmed]
  8. Specialized transduction of colicin E1 DNA in Escherichia coli K-12. Fukumaki, Y., Shimada, K., Takagi, Y. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  9. Evidence for the involvement of cytosolic 5'-nucleotidase (cN-II) in the synthesis of guanine nucleotides from xanthosine. Barsotti, C., Pesi, R., Giannecchini, M., Ipata, P.L. J. Biol. Chem. (2005) [Pubmed]
  10. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itpa gene. Lin, S., McLennan, A.G., Ying, K., Wang, Z., Gu, S., Jin, H., Wu, C., Liu, W., Yuan, Y., Tang, R., Xie, Y., Mao, Y. J. Biol. Chem. (2001) [Pubmed]
  11. Xanthosine utilization in Salmonella enterica serovar Typhimurium is recovered by a single aspartate-to-glycine substitution in xanthosine phosphorylase. Hansen, M.R., Tranekjaer Jørgensen, J., Dandanell, G. J. Bacteriol. (2006) [Pubmed]
  12. Identification of an ITPase/XTPase in Escherichia coli by structural and biochemical analysis. Zheng, J., Singh, V.K., Jia, Z. Structure (2005) [Pubmed]
  13. Biochemical characterization of human GMP synthetase. Nakamura, J., Lou, L. J. Biol. Chem. (1995) [Pubmed]
  14. 7-Methylxanthine methyltransferase of coffee plants. Gene isolation and enzymatic properties. Ogawa, M., Herai, Y., Koizumi, N., Kusano, T., Sano, H. J. Biol. Chem. (2001) [Pubmed]
  15. The glutamine hydrolysis function of human GMP synthetase. Identification of an essential active site cysteine. Nakamura, J., Straub, K., Wu, J., Lou, L. J. Biol. Chem. (1995) [Pubmed]
  16. Synthesis and effect of nonhydrolyzable xanthosine triphosphate derivatives on prenylation of Rab5D136N. Yanachkov, I., Pan, J.Y., Wessling-Resnick, M., Wright, G.E. Mol. Pharmacol. (1997) [Pubmed]
  17. Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor. Shan, S.O., Walter, P. Biochemistry (2005) [Pubmed]
  18. A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP regulatory protein. Hwang, Y.W., Miller, D.L. J. Biol. Chem. (1987) [Pubmed]
  19. Clonal expansion of adult rat hepatic stem cell lines by suppression of asymmetric cell kinetics (SACK). Lee, H.S., Crane, G.G., Merok, J.R., Tunstead, J.R., Hatch, N.L., Panchalingam, K., Powers, M.J., Griffith, L.G., Sherley, J.L. Biotechnol. Bioeng. (2003) [Pubmed]
  20. Validation and application of a high-performance liquid chromatographic-based assay for determination of the inosine 5'-monophosphate dehydrogenase activity in erythrocytes. Khalil, P.N., Erb, N., Khalil, M.N., Escherich, G., Janka-Schaub, G.E. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2006) [Pubmed]
  21. Expression of human malaria parasite purine nucleoside phosphorylase in host enzyme-deficient erythrocyte culture. Enzyme characterization and identification of novel inhibitors. Daddona, P.E., Wiesmann, W.P., Milhouse, W., Chern, J.W., Townsend, L.B., Hershfield, M.S., Webster, H.K. J. Biol. Chem. (1986) [Pubmed]
  22. Functional group recognition at the aminoacylation and editing sites of E. coli valyl-tRNA synthetase. Tardif, K.D., Horowitz, J. RNA (2004) [Pubmed]
  23. Human IMP dehydrogenase catalyzes the dehalogenation of 2-fluoro- and 2-chloroinosine 5'-monophosphate in the absence of NAD. Antonino, L.C., Wu, J.C. Biochemistry (1994) [Pubmed]
  24. Different relationships between cellular adenosine or 3'-deoxyadenosine phosphorylation and cellular adenine ribonucleotide catabolism may be obtained. Overgaard-Hansen, K., Klenow, H. J. Cell. Physiol. (1993) [Pubmed]
  25. The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.). Mizuno, K., Kato, M., Irino, F., Yoneyama, N., Fujimura, T., Ashihara, H. FEBS Lett. (2003) [Pubmed]
  26. Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. Seeger, C., Poulsen, C., Dandanell, G. J. Bacteriol. (1995) [Pubmed]
  27. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis. Saxild, H.H., Nygaard, P. Mol. Gen. Genet. (1988) [Pubmed]
  28. Agarose-linked xanthosine: a biospecific resin for guanine aminohydrolase. Rosemeyer, H., Seela, F. Carbohydr. Res. (1981) [Pubmed]
  29. Development and application of a high-performance liquid chromatography-based assay for determination of the activity of inosine 5'-monophosphate dehydrogenase in whole blood and isolated mononuclear cells. Albrecht, W., Storck, M., Pfetsch, E., Martin, W., Abendroth, D. Therapeutic drug monitoring. (2000) [Pubmed]
  30. Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5'-monophosphate (XMP). Sigel, H., Operschall, B.P., Massoud, S.S., Song, B., Griesser, R. Dalton transactions (Cambridge, England : 2003) (2006) [Pubmed]
 
WikiGenes - Universities