The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

KMT2A  -  lysine (K)-specific methyltransferase 2A

Homo sapiens

Synonyms: ALL-1, ALL1, CXXC-type zinc finger protein 7, CXXC7, HRX, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MLL


Psychiatry related information on MLL

  • However, Q-RT-PCR is more accurate in assessing the molecular response after induction treatment and could be more useful in clinical decision-making in ALL1-AF4-positive ALL patients [7].
  • Interestingly, whilst all MLL fusion proteins tested so far phenocopy each other with respect to in vitro immortalization, the latency period required for the onset of acute leukemia in vivo is variable and partner protein dependent [8].

High impact information on MLL


Chemical compound and disease context of MLL


Biological context of MLL

  • Identifying translocations of the MLL gene at chromosome band 11q23 is important for the characterization and treatment of leukemia [2].
  • However, cytogenetic analysis does not always find the translocations and the many partner genes of MLL make molecular detection difficult [2].
  • The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression [3].
  • By PCR screening of a cDNA library prepared from a patient's leukemia cells with this translocation, we obtained a fusion transcript containing exon 7 of MLL and sequence of an unknown gene [17].
  • Overexpression of MLL-AF4 does not lead to increased proliferation in either cell line, but rather, cell growth was slowed compared with similar cell lines inducibly expressing truncated MLL [3].

Anatomical context of MLL


Associations of MLL with chemical compounds

  • Because the MLL repression domain activity was only partially relieved with the histone deacetylase inhibitor trichostatin A, we explored other protein interactions with this domain [23].
  • FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy [24].
  • The retention of the leucine zipper in the MLL and CALM fusions suggests that a key feature of these chimeric proteins may be their ability to interfere in normal gene regulation through interaction with the adenosine triphosphate-dependent chromatinremodeling complexes [25].
  • We constructed an inducible MLL fusion, MLL-ENL-ERtm, that rendered the transcriptional and transforming properties of MLL-ENL strictly dependent on the presence of 4-hydroxy-tamoxifen [26].
  • These findings suggest a potential link between MLL fusion-mediated leukaemogenesis and the inositol-signalling pathway [27].
  • Our results suggest that the mechanism of multiple lysine methylation by the MLL1 core complex involves the sequential addition of two methyl groups at two distinct active sites within the complex [28].

Physical interactions of MLL

  • Histone deacetylase 1 interacts with the MLL repression domain, partially mediating its activity; binding of Cyp33 to the adjacent MLL-PHD domain potentiates this binding [23].
  • The methyltransferase homology domain was shown to bind non-sequence specifically to DNA in vitro, providing evidence that the full transforming activity of HRX-ENL requires multiple DNA binding structures in HRX [29].
  • Oncogenic mutant forms of MLL retain an ability to interact with menin but not other identified complex components [30].
  • Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleus [31].
  • It is shown that the amino-terminal region of MLL (MLLN) interacts with TAF-Ibeta/SET [32].

Enzymatic interactions of MLL

  • AF10 is split by MLL and HEAB, a human homolog to a putative Caenorhabditis elegans ATP/GTP-binding protein in an invins(10;11)(p12;q23q12) [33].

Regulatory relationships of MLL

  • These results suggest that MLL fusion proteins impose a reversible block on myeloid differentiation through aberrant activation of a limited set of homeobox genes and Hox coregulators that are consistently expressed in MLL-associated leukemias [26].
  • In the case of AML M5a with t(11;19), the tumour cells with ALL-1 rearrangement expressed CD34 [34].
  • Anti-TLR2 mAb blocked greater than 50% of the MLL-induced production of IL-12 [35].
  • PURPOSE: TRX1 is a nondepleting anti-CD4 monoclonal IgG1 antibody being developed to induce tolerance by blocking CD4-mediated functions [36].
  • We found MLL to be more susceptible to etoposide-induced cleavage than RUNX1 and MLLT3, with maximum cleavage at a lower drug concentration [37].

Other interactions of MLL

  • This translocation is distinct from another type of 11;19 translocation with a 19p13.3 breakpoint that results in the fusion of MLL to the ENL gene [17].
  • The characterization of the normal functions of ELL as well as its altered function when fused to MLL will be critical to further our understanding of the mechanisms of leukemogenesis [17].
  • Further analysis of MSF may help to delineate the function of MLL partner genes in leukemia, particularly in therapy-related leukemia [4].
  • Expression of exogenous BMI-1 potentiates MLL repression domain activity [23].
  • The carboxy-terminal 84 amino acids of ENL, which encode two predicted helical structures highly conserved in AF9, were necessary and sufficient for transformation when they were fused to HRX [29].
  • The MEIS1 target gene of typical MLL fusion oncoproteins was underexpressed before and at MDS diagnosis [38].

Analytical, diagnostic and therapeutic context of MLL

  • Leukemia cells of this patient had a t(11;17)(q23;q25), which involved MLL as demonstrated by Southern blot analysis [4].
  • This enabled the formation of stem-loop templates with the fusion point of the chimeric transcript in the loop and the use of MLL primers in two-sided PCR [2].
  • We have studied eight t(11;16) patients, all of whom had prior therapy with drugs targetting topo II with fluorescence in situ hybridization (FISH) using a probe for MLL and a cosmid contig covering the CBP gene [39].
  • We identified the MLL-CALM fusion transcript (but not the reciprocal CALM-MLL transcript) in leukemia cell RNA by RT-PCR [40].
  • We report a novel MLL-associated chromosome translocation t(11;14)(q23;q24) in a child who showed signs of acute undifferentiated leukemia 3 years after intensive chemotherapy that included the topoisomerase-II inhibitor VP 16 [41].


  1. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. So, C.W., Caldas, C., Liu, M.M., Chen, S.J., Huang, Q.H., Gu, L.J., Sham, M.H., Wiedemann, L.M., Chan, L.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Panhandle PCR for cDNA: a rapid method for isolation of MLL fusion transcripts involving unknown partner genes. Megonigal, M.D., Rappaport, E.F., Wilson, R.B., Jones, D.H., Whitlock, J.A., Ortega, J.A., Slater, D.J., Nowell, P.C., Felix, C.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  3. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Xia, Z.B., Popovic, R., Chen, J., Theisler, C., Stuart, T., Santillan, D.A., Erfurth, F., Diaz, M.O., Zeleznik-Le, N.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Osaka, M., Rowley, J.D., Zeleznik-Le, N.J. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  5. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Ferrando, A.A., Armstrong, S.A., Neuberg, D.S., Sallan, S.E., Silverman, L.B., Korsmeyer, S.J., Look, A.T. Blood (2003) [Pubmed]
  6. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Liu, H., Cheng, E.H., Hsieh, J.J. Genes Dev. (2007) [Pubmed]
  7. Retrospective comparison of qualitative and quantitative reverse transcriptase polymerase chain reaction in diagnosing and monitoring the ALL1-AF4 fusion transcript in patients with acute lymphoblastic leukaemia. Elia, L., Gottardi, E., Floriddia, G., Grillo, R., Ciambelli, F., Luciani, M., Chiusolo, P., Invernizzi, R., Meloni, G., Foà, R., Saglio, G., Cimino, G. Leukemia (2004) [Pubmed]
  8. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Ayton, P.M., Cleary, M.L. Oncogene (2001) [Pubmed]
  9. hDOT1L links histone methylation to leukemogenesis. Okada, Y., Feng, Q., Lin, Y., Jiang, Q., Li, Y., Coffield, V.M., Su, L., Xu, G., Zhang, Y. Cell (2005) [Pubmed]
  10. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Hsieh, J.J., Cheng, E.H., Korsmeyer, S.J. Cell (2003) [Pubmed]
  11. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J. Nat. Genet. (2002) [Pubmed]
  12. t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (GUANOSINE 5' MONOPHOSPHATE SYNTHETASE) gene. Pegram, L.D., Megonigal, M.D., Lange, B.J., Nowell, P.C., Rowley, J.D., Rappaport, E.F., Felix, C.A. Blood (2000) [Pubmed]
  13. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Steudel, C., Wermke, M., Schaich, M., Schäkel, U., Illmer, T., Ehninger, G., Thiede, C. Genes Chromosomes Cancer (2003) [Pubmed]
  14. Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Yao, Q., Nishiuchi, R., Kitamura, T., Kersey, J.H. Leukemia (2005) [Pubmed]
  15. A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias. Morrissey, J., Tkachuk, D.C., Milatovich, A., Francke, U., Link, M., Cleary, M.L. Blood (1993) [Pubmed]
  16. Protective roles of redox-active protein thioredoxin-1 for severe acute pancreatitis. Ohashi, S., Nishio, A., Nakamura, H., Kido, M., Ueno, S., Uza, N., Inoue, S., Kitamura, H., Kiriya, K., Asada, M., Tamaki, H., Matsuura, M., Kawasaki, K., Fukui, T., Watanabe, N., Nakase, H., Yodoi, J., Okazaki, K., Chiba, T. Am. J. Physiol. Gastrointest. Liver Physiol. (2006) [Pubmed]
  17. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Thirman, M.J., Levitan, D.A., Kobayashi, H., Simon, M.C., Rowley, J.D. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  18. The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Fuchs, U., Rehkamp, G., Haas, O.A., Slany, R., Kōnig, M., Bojesen, S., Bohle, R.M., Damm-Welk, C., Ludwig, W.D., Harbott, J., Borkhardt, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  19. ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Simone, F., Luo, R.T., Polak, P.E., Kaberlein, J.J., Thirman, M.J. Blood (2003) [Pubmed]
  20. Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Johnson, J.J., Chen, W., Hudson, W., Yao, Q., Taylor, M., Rabbitts, T.H., Kersey, J.H. Blood (2003) [Pubmed]
  21. SN-1, a novel leukemic cell line with t(11;16)(q23;p13): myeloid characteristics and resistance to retinoids and vitamin D3. Hayashi, Y., Honma, Y., Niitsu, N., Taki, T., Bessho, F., Sako, M., Mori, T., Yanagisawa, M., Tsuji, K., Nakahata, T. Cancer Res. (2000) [Pubmed]
  22. The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures. Butler, L.H., Slany, R., Cui, X., Cleary, M.L., Mason, D.Y. Blood (1997) [Pubmed]
  23. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Xia, Z.B., Anderson, M., Diaz, M.O., Zeleznik-Le, N.J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  24. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Taketani, T., Taki, T., Sugita, K., Furuichi, Y., Ishii, E., Hanada, R., Tsuchida, M., Sugita, K., Ida, K., Hayashi, Y. Blood (2004) [Pubmed]
  25. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Debernardi, S., Bassini, A., Jones, L.K., Chaplin, T., Linder, B., de Bruijn, D.R., Meese, E., Young, B.D. Blood (2002) [Pubmed]
  26. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Zeisig, B.B., Milne, T., García-Cuéllar, M.P., Schreiner, S., Martin, M.E., Fuchs, U., Borkhardt, A., Chanda, S.K., Walker, J., Soden, R., Hess, J.L., Slany, R.K. Mol. Cell. Biol. (2004) [Pubmed]
  27. The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. So, C.W., So, C.K., Cheung, N., Chew, S.L., Sham, M.H., Chan, L.C. Leukemia (2000) [Pubmed]
  28. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. Patel, A., Dharmarajan, V., Vought, V.E., Cosgrove, M.S. J. Biol. Chem. (2009) [Pubmed]
  29. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Slany, R.K., Lavau, C., Cleary, M.L. Mol. Cell. Biol. (1998) [Pubmed]
  30. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W., Cleary, M.L. Mol. Cell. Biol. (2004) [Pubmed]
  31. Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleus. Joh, T., Yamamoto, K., Kagami, Y., Kakuda, H., Sato, T., Yamamoto, T., Takahashi, T., Ueda, R., Kaibuchi, K., Seto, M. Oncogene (1997) [Pubmed]
  32. Synergistic action of MLL, a TRX protein with template activating factor-I, a histone chaperone. Shimoyama, T., Kato, K., Miyaji-Yamaguchi, M., Nagata, K. FEBS Lett. (2005) [Pubmed]
  33. AF10 is split by MLL and HEAB, a human homolog to a putative Caenorhabditis elegans ATP/GTP-binding protein in an invins(10;11)(p12;q23q12). Tanabe, S., Bohlander, S.K., Vignon, C.V., Espinosa, R., Zhao, N., Strissel, P.L., Zeleznik-Le, N.J., Rowley, J.D. Blood (1996) [Pubmed]
  34. Secondary acute leukaemias with 11q23 rearrangement: clinical, cytogenetic, FISH and FICTION studies. Zhang, Y., Poetsch, M., Weber-Matthiesen, K., Rohde, K., Winkemann, M., Haferlach, T., Gassmann, W., Ludwig, W.D., Grote, W., Löffler, H., Schlegelberger, B. Br. J. Haematol. (1996) [Pubmed]
  35. A polymorphism in the toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Kang, T.J., Lee, S.B., Chae, G.T. Cytokine (2002) [Pubmed]
  36. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Ng, C.M., Stefanich, E., Anand, B.S., Fielder, P.J., Vaickus, L. Pharm. Res. (2006) [Pubmed]
  37. Genotoxicity of etoposide: greater susceptibility of MLL than other target genes. Ng, A., Taylor, G.M., Eden, O.B. Cancer Genet. Cytogenet. (2006) [Pubmed]
  38. Prospective tracing of MLL-FRYL clone with low MEIS1 expression from emergence during neuroblastoma treatment to diagnosis of myelodysplastic syndrome. Robinson, B.W., Cheung, N.K., Kolaris, C.P., Jhanwar, S.C., Choi, J.K., Osheroff, N., Felix, C.A. Blood (2008) [Pubmed]
  39. All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Rowley, J.D., Reshmi, S., Sobulo, O., Musvee, T., Anastasi, J., Raimondi, S., Schneider, N.R., Barredo, J.C., Cantu, E.S., Schlegelberger, B., Behm, F., Doggett, N.A., Borrow, J., Zeleznik-Le, N. Blood (1997) [Pubmed]
  40. A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein. Wechsler, D.S., Engstrom, L.D., Alexander, B.M., Motto, D.G., Roulston, D. Genes Chromosomes Cancer (2003) [Pubmed]
  41. GPHN, a novel partner gene fused to MLL in a leukemia with t(11;14)(q23;q24). Eguchi, M., Eguchi-Ishimae, M., Seto, M., Morishita, K., Suzuki, K., Ueda, R., Ueda, K., Kamada, N., Greaves, M. Genes Chromosomes Cancer (2001) [Pubmed]
WikiGenes - Universities