The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Sep15  -  selenoprotein

Mus musculus

Synonyms: 15 kDa selenoprotein, 9430015P09Rik
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sep15

  • Unlike the E. coli enzyme, which is not a selenoprotein, the presence of selenocysteine in the mouse enzyme is indicated by a TGA codon in the open reading frame of the gene in a position corresponding to the essential cysteine of the E. coli enzyme [1].
  • The selenoprotein-deficient mice exhibited accelerated development of lesions associated with prostate cancer progression, implicating selenoproteins in cancer risk and development and raising the possibility that selenium prevents cancer by modulating the levels of these selenoproteins [2].
  • Measurement of selenoprotein P in human plasma has shown that it is depressed by selenium deficiency and by cirrhosis [3].
  • Genetic inactivation of selenoprotein P leads to a marked reduction of brain Se content, which has not been achieved by dietary Se depletion, and to a movement disorder and spontaneous seizures [4].
  • Selenoprotein P mRNA level also increased in Huh-7 human hepatoma cells incubated with GalN (5 or 10 mM) [5].
 

High impact information on Sep15

 

Chemical compound and disease context of Sep15

  • These constructions permitted high-level production of GPx mutants, where the SeCys codon was replaced by cysteine (UGC, UGU) or serine (UCA) codons, but synthesis of selenoprotein could not be detected: our data suggest that signals used for the recognition of the UGA codon as a SeCys codon are not conserved between E. coli and mammalian cells [11].
 

Biological context of Sep15

  • The consequences on selenoprotein biosynthesis of overexpressing either the wild type or a mutant tRNA([Ser]Sec) lacking the modified base, isopentenyladenosine, in its anticodon loop were examined by introducing multiple copies of the corresponding tRNA([Ser]Sec) genes into the mouse genome [12].
  • The 3-kb human SelM-encoding gene has five exons and is located on chromosome 22 but has not been correctly identified by either Celera or the public Human Genome Project. We characterized human and mouse SelM cDNA sequences and expressed the selenoprotein in various mammalian cell lines [13].
  • Selenoprotein P binds to endothelial cells in the rat, and plasma levels of the protein correlate with prevention of diquat-induced lipid peroxidation and hepatic endothelial cell injury [3].
  • These proteins lack common amino acid sequence motifs, but 3'-untranslated regions of selenoprotein genes contain a common stem-loop structure, selenocysteine insertion sequence (SECIS) element, that is necessary for decoding UGA as selenocysteine rather than a stop signal [14].
  • Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis [3].
 

Anatomical context of Sep15

 

Associations of Sep15 with chemical compounds

 

Regulatory relationships of Sep15

 

Other interactions of Sep15

  • Moreover, within affected tissues, expression of specific selenoproteins was regulated differently and often in a contrasting manner, with levels of Sep15 and the glutathione peroxidases GPx1 and GPx4 being substantially reduced [23].
  • Thus, the conditional Trsp knockout mouse allows tissue-specific manipulation of Sec tRNA and selenoprotein expression, suggesting that this approach will provide a useful tool for studying the role of selenoproteins in health [23].
  • We generated recombinant selenoprotein forms of TR1 and TR3 and found that these enzymes were inhibited by zinc, but not by calcium or cobalt ions [24].
  • These results provide evidence that a lack of selenoprotein activity increases colon cancer susceptibility [25].
  • Neither the GPX1 knockout nor the dietary Se concentrations affected mRNA levels of GPX4 in testis or selenoprotein P in kidney [26].
 

Analytical, diagnostic and therapeutic context of Sep15

References

  1. Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Kim, I.Y., Guimarães, M.J., Zlotnik, A., Bazan, J.F., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Diwadkar-Navsariwala, V., Prins, G.S., Swanson, S.M., Birch, L.A., Ray, V.H., Hedayat, S., Lantvit, D.L., Diamond, A.M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Burk, R.F., Hill, K.E. Annu. Rev. Nutr. (2005) [Pubmed]
  4. Selenium and brain function: a poorly recognized liaison. Schweizer, U., Bräuer, A.U., Köhrle, J., Nitsch, R., Savaskan, N.E. Brain Res. Brain Res. Rev. (2004) [Pubmed]
  5. Possible involvement of reactive oxygen species in D-galactosamine-induced sensitization against tumor necrosis factor-alpha-induced hepatocyte apoptosis. Osawa, Y., Nagaki, M., Banno, Y., Yamada, Y., Imose, M., Nozawa, Y., Moriwaki, H., Nakashima, S. J. Cell. Physiol. (2001) [Pubmed]
  6. Coupled tRNA(Sec)-dependent assembly of the selenocysteine decoding apparatus. Zavacki, A.M., Mansell, J.B., Chung, M., Klimovitsky, B., Harney, J.W., Berry, M.J. Mol. Cell (2003) [Pubmed]
  7. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. McClung, J.P., Roneker, C.A., Mu, W., Lisk, D.J., Langlais, P., Liu, F., Lei, X.G. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Sun, Q.A., Kirnarsky, L., Sherman, S., Gladyshev, V.N. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Bösl, M.R., Takaku, K., Oshima, M., Nishimura, S., Taketo, M.M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Ghassabeh, G.H., De Baetselier, P., Brys, L., Noël, W., Van Ginderachter, J.A., Meerschaut, S., Beschin, A., Brombacher, F., Raes, G. Blood (2006) [Pubmed]
  11. Cloning of murine SeGpx cDNA and synthesis of mutated GPx proteins in Escherichia coli. Rocher, C., Faucheu, C., Hervé, F., Bénicourt, C., Lalanne, J.L. Gene (1991) [Pubmed]
  12. Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Moustafa, M.E., Carlson, B.A., El-Saadani, M.A., Kryukov, G.V., Sun, Q.A., Harney, J.W., Hill, K.E., Combs, G.F., Feigenbaum, L., Mansur, D.B., Burk, R.F., Berry, M.J., Diamond, A.M., Lee, B.J., Gladyshev, V.N., Hatfield, D.L. Mol. Cell. Biol. (2001) [Pubmed]
  13. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Korotkov, K.V., Novoselov, S.V., Hatfield, D.L., Gladyshev, V.N. Mol. Cell. Biol. (2002) [Pubmed]
  14. New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. Kryukov, G.V., Kryukov, V.M., Gladyshev, V.N. J. Biol. Chem. (1999) [Pubmed]
  15. Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. Kumaraswamy, E., Malykh, A., Korotkov, K.V., Kozyavkin, S., Hu, Y., Kwon, S.Y., Moustafa, M.E., Carlson, B.A., Berry, M.J., Lee, B.J., Hatfield, D.L., Diamond, A.M., Gladyshev, V.N. J. Biol. Chem. (2000) [Pubmed]
  16. Multiple controls over the efficiency of translation of the mRNAs encoding transition proteins, protamines, and the mitochondrial capsule selenoprotein in late spermatids in mice. Kleene, K.C. Dev. Biol. (1993) [Pubmed]
  17. Intracellular 58-kd selenoprotein levels correlate with inhibition of DNA synthesis in mammary epithelial cells. Morrison, D.G., Dishart, M.K., Medina, D. Carcinogenesis (1988) [Pubmed]
  18. Differential expression of selenoproteins by human skin cells and protection by selenium from UVB-radiation-induced cell death. Rafferty, T.S., McKenzie, R.C., Hunter, J.A., Howie, A.F., Arthur, J.R., Nicol, F., Beckett, G.J. Biochem. J. (1998) [Pubmed]
  19. A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase. Labunskyy, V.M., Ferguson, A.D., Fomenko, D.E., Chelliah, Y., Hatfield, D.L., Gladyshev, V.N. J. Biol. Chem. (2005) [Pubmed]
  20. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. Carlson, B.A., Xu, X.M., Gladyshev, V.N., Hatfield, D.L. J. Biol. Chem. (2005) [Pubmed]
  21. cDNA cloning, purification, and characterization of mouse liver selenocysteine lyase. Candidate for selenium delivery protein in selenoprotein synthesis. Mihara, H., Kurihara, T., Watanabe, T., Yoshimura, T., Esaki, N. J. Biol. Chem. (2000) [Pubmed]
  22. Serine and methionine enhancement of selenite inhibition of DNA synthesis in a mouse mammary epithelial cell line. Morrison, D.G., Dishart, M.K., Medina, D. Carcinogenesis (1988) [Pubmed]
  23. Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium. Kumaraswamy, E., Carlson, B.A., Morgan, F., Miyoshi, K., Robinson, G.W., Su, D., Wang, S., Southon, E., Tessarollo, L., Lee, B.J., Gladyshev, V.N., Hennighausen, L., Hatfield, D.L. Mol. Cell. Biol. (2003) [Pubmed]
  24. Characterization of alternative cytosolic forms and cellular targets of mouse mitochondrial thioredoxin reductase. Turanov, A.A., Su, D., Gladyshev, V.N. J. Biol. Chem. (2006) [Pubmed]
  25. Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression. Irons, R., Carlson, B.A., Hatfield, D.L., Davis, C.D. J. Nutr. (2006) [Pubmed]
  26. Knockout of cellular glutathione peroxidase affects selenium-dependent parameters similarly in mice fed adequate and excessive dietary selenium. Cheng, W.H., Combs, G.F., Lei, X.G. Biofactors (1998) [Pubmed]
  27. Genes involved in nonpermissive temperature-induced cell differentiation in Sertoli TTE3 cells bearing temperature-sensitive simian virus 40 large T-antigen. Tabuchi, Y., Kondo, T., Suzuki, Y., Obinata, M. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  28. Brainstem axonal degeneration in mice with deletion of selenoprotein p. Valentine, W.M., Hill, K.E., Austin, L.M., Valentine, H.L., Goldowitz, D., Burk, R.F. Toxicologic pathology. (2005) [Pubmed]
  29. Expression pattern of the mitochondrial capsule selenoprotein mRNA in the mouse testis after puberty; in situ hybridization study. Nam, S.Y., Maeda, S., Ogawa, K., Kurohmaru, M., Hayashi, Y. J. Vet. Med. Sci. (1997) [Pubmed]
 
WikiGenes - Universities