The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

gltF  -  periplasmic protein

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3204, JW3181, ossB
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of gltF

  • gltF, a member of the gltBDF operon of Escherichia coli, is involved in nitrogen-regulated gene expression [1].
  • Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes [2].
  • Heme, a major iron source, is transported through the outer membrane of Gram-negative bacteria by specific heme/hemoprotein receptors and through the inner membrane by heme-specific, periplasmic, binding protein-dependent, ATP-binding cassette permeases [3].
  • The protein contains the sequence Cys-Pro-His-Cys (CPHC) and is highly similar to two other periplasmic CPHC motif-containing proteins: DsbA, an Escherichia coli protein (45% identity, 87% homology) and TcpG, a Vibrio cholerae protein (32% identity, 74% homology) [4].
  • A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd [4].

High impact information on gltF

  • Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space [5].
  • DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase [5].
  • Together with the previous contention that the Cpx system senses a protein abnormality not only at periplasmic and outer membrane locations but also at the plasma membrane, abnormal states of membrane proteins are postulated to be generated in these secY mutants [6].
  • The mutations did not interfere with the biogenesis of the protein, and disulfide bond formation appeared to be dependent on the periplasmic enzyme DsbA, which catalyzes disulfide bond formation in the periplasm [7].
  • Remarkably, in the presence of ligand, increased reactivity is observed with Cys replacements located predominantly on the periplasmic side of the sugar-binding site [8].

Chemical compound and disease context of gltF


Biological context of gltF

  • Third, glutamate-dependent repression of the glt operon appears to be mediated by the product of the gltF gene [1].
  • Two open reading frames were identified, the first of which corresponds to gltF [1].
  • Here, we show that to use heme iron E. coli requires the dipeptide inner membrane ATP-binding cassette transporter (DppBCDF) and either of two periplasmic binding proteins: MppA, the L-alanyl-gamma-D-glutamyl-meso-diaminopimelate binding protein, or DppA, the dipeptide binding protein [3].
  • Together, our data support a model in which SurA is specialized to interact with non-native periplasmic outer membrane protein folding intermediates and to assist in their maturation from early to late outer membrane-associated steps [14].
  • These results identify the first prokaryotic GSH transporter and indicate a key role for GSH in periplasmic redox homeostasis [15].

Anatomical context of gltF

  • The most striking feature of the AcrB trimer is the presence of three vestibules open to the periplasm at the boundary between the periplasmic headpiece and the transmembrane region [16].
  • Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released [17].
  • These results suggest that periplasmic inclusion body formation may result in intermolecular interactions between participating proteins without loss of function of the fused enzymes [18].
  • The resultant periplasmic extract lacked lipopolysaccharide, protein markers of inner or outer membranes, surface-radiolabelled protein components, or ribosomal proteins [19].
  • The secretion of the alpha-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form [20].

Associations of gltF with chemical compounds

  • The second transport system, whose structural gene was called gltF and is located at minute 0, was L-glutamate specific, sodium independent, and alpha-methylglutamate sensitive [21].
  • Saccharomyces cerevisiae strains able to use sucrose produce the enzyme invertase, which is targeted by a signal peptide to the central secretory pathway and the periplasmic space [22].
  • After isopropyl beta-D-thiogalactoside induction, the 70-kDa His(10)-tagged m22(scFv)-ETA' was directed into the periplasmic space and purified by a combination of metal-ion affinity and molecular size-chromatography [23].
  • Indeed, the C domain probably extends well beyond the confines of the outer membrane bilayer, forming a centrally plugged channel that penetrates both the peptidoglycan on the periplasmic side and the lipopolysaccharide and capsule layers on the cell surface [24].
  • The membrane-bound complex of the prokaryotic histidine permease, a periplasmic protein-dependent ABC transporter, is composed of two hydrophobic subunits, HisQ and HisM, and two identical ATP-binding subunits, HisP, and is energized by ATP hydrolysis [25].

Other interactions of gltF


Analytical, diagnostic and therapeutic context of gltF


  1. gltF, a member of the gltBDF operon of Escherichia coli, is involved in nitrogen-regulated gene expression. Castaño, I., Flores, N., Valle, F., Covarrubias, A.A., Bolivar, F. Mol. Microbiol. (1992) [Pubmed]
  2. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. Goss, T.J., Perez-Matos, A., Bender, R.A. J. Bacteriol. (2001) [Pubmed]
  3. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Létoffé, S., Delepelaire, P., Wandersman, C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  4. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Tomb, J.F. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  5. Crystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation. Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., Ito, K. Cell (2006) [Pubmed]
  6. SecY alterations that impair membrane protein folding and generate a membrane stress. Shimohata, N., Nagamori, S., Akiyama, Y., Kaback, H.R., Ito, K. J. Cell Biol. (2007) [Pubmed]
  7. Folding of a bacterial outer membrane protein during passage through the periplasm. Eppens, E.F., Nouwen, N., Tommassen, J. EMBO J. (1997) [Pubmed]
  8. Site-directed alkylation and the alternating access model for LacY. Kaback, H.R., Dunten, R., Frillingos, S., Venkatesan, P., Kwaw, I., Zhang, W., Ermolova, N. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  9. The excC gene of Escherichia coli K-12 required for cell envelope integrity encodes the peptidoglycan-associated lipoprotein (PAL). Lazzaroni, J.C., Portalier, R. Mol. Microbiol. (1992) [Pubmed]
  10. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Potter, L.C., Millington, P., Griffiths, L., Thomas, G.H., Cole, J.A. Biochem. J. (1999) [Pubmed]
  11. Cloning and functional expression of dendrotoxin K from black mamba, a K+ channel blocker. Smith, L.A., Lafaye, P.J., LaPenotiere, H.F., Spain, T., Dolly, J.O. Biochemistry (1993) [Pubmed]
  12. In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Joly, J.C., Swartz, J.R. Biochemistry (1997) [Pubmed]
  13. Mutational Analysis of Peptidoglycan Amidase MepA. Firczuk, M.L., Bochtler, M. Biochemistry (2007) [Pubmed]
  14. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. Hennecke, G., Nolte, J., Volkmer-Engert, R., Schneider-Mergener, J., Behrens, S. J. Biol. Chem. (2005) [Pubmed]
  15. A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. Pittman, M.S., Robinson, H.C., Poole, R.K. J. Biol. Chem. (2005) [Pubmed]
  16. Multidrug-exporting secondary transporters. Murakami, S., Yamaguchi, A. Curr. Opin. Struct. Biol. (2003) [Pubmed]
  17. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. Tefsen, B., Geurtsen, J., Beckers, F., Tommassen, J., de Cock, H. J. Biol. Chem. (2005) [Pubmed]
  18. Formation of active inclusion bodies in the periplasm of Escherichia coli. Ari??, J.P., Miot, M., Sassoon, N., Betton, J.M. Mol. Microbiol. (2006) [Pubmed]
  19. Isolation of the periplasm of Neisseria gonorrhoeae. Judd, R.C., Porcella, S.F. Mol. Microbiol. (1993) [Pubmed]
  20. Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Balsalobre, C., Silván, J.M., Berglund, S., Mizunoe, Y., Uhlin, B.E., Wai, S.N. Mol. Microbiol. (2006) [Pubmed]
  21. Biochemical and genetic characterization of L-glutamate transport and utilization in Salmonella typhimurium LT-2 mutants. Alvarez-Jacobs, J., de la Garza, M., Ortega, M.V. Biochem. Genet. (1986) [Pubmed]
  22. Split invertase polypeptides form functional complexes in the yeast periplasm in vivo. Schonberger, O., Knox, C., Bibi, E., Pines, O. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Tur, M.K., Huhn, M., Thepen, T., Stöcker, M., Krohn, R., Vogel, S., Jost, E., Osieka, R., van de Winkel, J.G., Fischer, R., Finnern, R., Barth, S. Cancer Res. (2003) [Pubmed]
  24. Structural insights into the secretin PulD and its trypsin-resistant core. Chami, M., Guilvout, I., Gregorini, M., Rémigy, H.W., Müller, S.A., Valerio, M., Engel, A., Pugsley, A.P., Bayan, N. J. Biol. Chem. (2005) [Pubmed]
  25. Modulation of ATPase activity by physical disengagement of the ATP-binding domains of an ABC transporter, the histidine permease. Liu, P.Q., Liu, C.E., Ames, G.F. J. Biol. Chem. (1999) [Pubmed]
  26. Characterization of the gltF gene product of Escherichia coli. Grassl, G., Bufe, B., Müller, B., Rösel, M., Kleiner, D. FEMS Microbiol. Lett. (1999) [Pubmed]
  27. Cloning and expression of Vibrio cholerae dsbA, a gene encoding a periplasmic protein disulphide isomerase. Lowe, E.D., Freedman, R.B., Hirst, T.R., Barth, P.T. Biochem. Soc. Trans. (1995) [Pubmed]
  28. The Critical Roles of Polyamines in Regulating ColE7 Production and Restricting ColE7 Uptake of the Colicin-producing Escherichia coli. Pan, Y.H., Liao, C.C., Kuo, C.C., Duan, K.J., Liang, P.H., Yuan, H.S., Hu, S.T., Chak, K.F. J. Biol. Chem. (2006) [Pubmed]
  29. Characterization of F-pilin as an inner membrane component of Escherichia coli K12. Paiva, W.D., Grossman, T., Silverman, P.M. J. Biol. Chem. (1992) [Pubmed]
  30. Crystal Structure of Osmoporin OmpC from E. coli at 2.0 A. Baslé, A., Rummel, G., Storici, P., Rosenbusch, J.P., Schirmer, T. J. Mol. Biol. (2006) [Pubmed]
  31. Expression of active recombinant pallidipin, a novel platelet aggregation inhibitor, in the periplasm of Escherichia coli. Haendler, B., Becker, A., Noeske-Jungblut, C., Krätzschmar, J., Donner, P., Schleuning, W.D. Biochem. J. (1995) [Pubmed]
  32. Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. Avila-Sakar, A.J., Misaghi, S., Wilson-Kubalek, E.M., Downing, K.H., Zgurskaya, H., Nikaido, H., Nogales, E. J. Struct. Biol. (2001) [Pubmed]
WikiGenes - Universities