The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

mioC  -  FMN-binding protein MioC

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3736, JW3720, yieB
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of mioC

  • In Escherichia coli, gidA and dnaA transcription are shut off transiently after initiation of chromosome replication, while mioC transcription is shut off before initiation [1].
  • The nifJ gene of Klebsiella pneumoniae encodes an oxidoreductase required for the transfer of electrons from pyruvate to flavodoxin, which reduces nitrogenase [2].
  • To investigate whether flavodoxins can serve as useful models of the analogous domain in P450 reductase, we have examined the FNR-Fld system from the cyanobacterium Anabaena [3].
  • SiR-FP domains involved in binding FMN, FAD, and NADPH are proposed from amino acid sequence homologies with Desulfovibrio vulgaris flavodoxin (Dubourdieu, M., and Fox, J.L. (1977) J. Biol. Chem. 252, 1453-1463) and spinach ferredoxin-NADP+ oxidoreductase (Karplus, P.A., Walsh, K.A., and Herriott, J. R. (1984) Biochemistry 23, 6576-6583) [4].
  • Chemical synthesis and expression of a synthetic gene for the flavodoxin from Clostridium MP [5].
 

High impact information on mioC

  • IspH protein could also be activated by a mixture of flavodoxin, flavodoxin reductase, and NADPH at a rate of 3 nmol x min(-1) x mg(-1) [6].
  • We address this issue by using NMR chemical shift mapping to identify the surfaces on flavodoxin that bind flavodoxin reductase and methionine synthase [7].
  • A role for reduced ferredoxin and flavodoxin in the adaptive soxRS response to oxidative stress and in the regulation of the redox status of soxR is discussed [8].
  • The structure revealed that each monomer of AzoR has a flavodoxin-like structure, without the explicit overall amino acid sequence homology [9].
  • Fd-epsilon(88-stop) caused higher rates of uncoupled ATP hydrolysis than Fd-epsilon, and epsilon(88-stop) showed an increased rate of membrane-bound ATP hydrolysis but decreased proton pumping relative to the wild type [10].
 

Chemical compound and disease context of mioC

 

Biological context of mioC

  • It is proposed that mioC transcription prevents initiation of chromosome replication, and must terminate before replication can begin [15].
  • These results suggest that coupled transcription starting from the gid as well as the mioC promoter activates initiation of plasmid replication, the major contribution being made by gid transcription [16].
  • These transcripts, originating either at the mioC and/or the ansC promoter traverse the replication origin [17].
  • Flow cytometry was employed to study the DNA replication control and growth pattern of the resulting mioC mutants [18].
  • All parameters measured (growth rate, cell size, DNA/cell, number of origins per cell, timing of initiation) were the same for the wild type and all the mioC mutant cells under steady state growth and after different shifts in growth medium and after induction of the stringent response [18].
 

Anatomical context of mioC

 

Associations of mioC with chemical compounds

  • It was further shown that mioC transcription was present throughout the induction of initiation by addition of chloramphenicol to a dnaA5(Ts) mutant growing at a semipermissive temperature [20].
  • The presence of flavin mononucleotide and the primary sequence similarity to flavodoxin suggest that MioC may function as an electron transport protein [21].
  • We have previously identified two of these proteins as flavodoxin and ferredoxin (flavodoxin) NADP(+) reductase [21].
  • In addition, domains homologous to flavodoxin are components of the multidomain flavoproteins cytochrome P450 reductase, nitric oxide synthase, and methionine synthase reductase [7].
  • Formation of the glycyl radical in the inactive enzyme requires S-adenosylmethionine (AdoMet), dithiothreitol, K+, and either an enzymatic (reduced flavodoxin) or chemical (dithionite or 5-deazaflavin plus light) reducing system [22].
 

Other interactions of mioC

  • In both seqA- and dam- cells, gidA and dnaA continued to be transcribed after initiation, whereas the inhibition of mioC transcription before initiation was unaltered [1].
  • PS I complexes isolated from the menA and menB mutant strains contain the full complement of polypeptides, show photoreduction of F(A) and F(B) at 15 K, and support 82-84% of the wild type rate of electron transfer from cytochrome c(6) to flavodoxin [23].
 

Analytical, diagnostic and therapeutic context of mioC

References

  1. DNA sequestration and transcription in the oriC region of Escherichia coli. Bogan, J.A., Helmstetter, C.E. Mol. Microbiol. (1997) [Pubmed]
  2. Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Bauer, C.C., Scappino, L., Haselkorn, R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  3. Negatively charged anabaena flavodoxin residues (Asp144 and Glu145) are important for reconstitution of cytochrome P450 17alpha-hydroxylase activity. Jenkins, C.M., Genzor, C.G., Fillat, M.F., Waterman, M.R., Gómez-Moreno, C. J. Biol. Chem. (1997) [Pubmed]
  4. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. Ostrowski, J., Barber, M.J., Rueger, D.C., Miller, B.E., Siegel, L.M., Kredich, N.M. J. Biol. Chem. (1989) [Pubmed]
  5. Chemical synthesis and expression of a synthetic gene for the flavodoxin from Clostridium MP. Eren, M., Swenson, R.P. J. Biol. Chem. (1989) [Pubmed]
  6. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Rohdich, F., Zepeck, F., Adam, P., Hecht, S., Kaiser, J., Laupitz, R., Gräwert, T., Amslinger, S., Eisenreich, W., Bacher, A., Arigoni, D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  7. Mapping the interactions between flavodoxin and its physiological partners flavodoxin reductase and cobalamin-dependent methionine synthase. Hall, D.A., Vander Kooi, C.W., Stasik, C.N., Stevens, S.Y., Zuiderweg, E.R., Matthews, R.G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Liochev, S.I., Hausladen, A., Beyer, W.F., Fridovich, I. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. Ito, K., Nakanishi, M., Lee, W.C., Sasaki, H., Zenno, S., Saigo, K., Kitade, Y., Tanokura, M. J. Biol. Chem. (2006) [Pubmed]
  10. The role of the epsilon subunit in the Escherichia coli ATP synthase. The C-terminal domain is required for efficient energy coupling. Cipriano, D.J., Dunn, S.D. J. Biol. Chem. (2006) [Pubmed]
  11. Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization. Hawkes, D.B., Adams, G.W., Burlingame, A.L., Ortiz de Montellano, P.R., De Voss, J.J. J. Biol. Chem. (2002) [Pubmed]
  12. Side chain orientation from methyl 1H-1H residual dipolar couplings measured in highly deuterated proteins. Sibille, N., Bersch, B., Covès, J., Blackledge, M., Brutscher, B. J. Am. Chem. Soc. (2002) [Pubmed]
  13. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. Ingelman, M., Bianchi, V., Eklund, H. J. Mol. Biol. (1997) [Pubmed]
  14. Interaction of flavodoxin with cobalamin-dependent methionine synthase. Hall, D.A., Jordan-Starck, T.C., Loo, R.O., Ludwig, M.L., Matthews, R.G. Biochemistry (2000) [Pubmed]
  15. Correlation of gene transcription with the time of initiation of chromosome replication in Escherichia coli. Theisen, P.W., Grimwade, J.E., Leonard, A.C., Bogan, J.A., Helmstetter, C.E. Mol. Microbiol. (1993) [Pubmed]
  16. Concurrent transcription from the gid and mioC promoters activates replication of an Escherichia coli minichromosome. Ogawa, T., Okazaki, T. Mol. Gen. Genet. (1991) [Pubmed]
  17. AsnC, a multifunctional regulator of genes located around the replication origin of Escherichia coli, oriC. Kölling, R., Gielow, A., Seufert, W., Kücherer, C., Messer, W. Mol. Gen. Genet. (1988) [Pubmed]
  18. Different effects of mioC transcription on initiation of chromosomal and minichromosomal replication in Escherichia coli. Løbner-Olesen, A., Boye, E. Nucleic Acids Res. (1992) [Pubmed]
  19. Roles of divalent metal ions in oxidations catalyzed by recombinant cytochrome P450 3A4 and replacement of NADPH--cytochrome P450 reductase with other flavoproteins, ferredoxin, and oxygen surrogates. Yamazaki, H., Ueng, Y.F., Shimada, T., Guengerich, F.P. Biochemistry (1995) [Pubmed]
  20. mioC transcription, initiation of replication, and the eclipse in Escherichia coli. Bogan, J.A., Helmstetter, C.E. J. Bacteriol. (1996) [Pubmed]
  21. MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro. Birch, O.M., Hewitson, K.S., Fuhrmann, M., Burgdorf, K., Baldwin, J.E., Roach, P.L., Shaw, N.M. J. Biol. Chem. (2000) [Pubmed]
  22. Activation of the anaerobic ribonucleotide reductase from Escherichia coli. The essential role of the iron-sulfur center for S-adenosylmethionine reduction. Ollagnier, S., Mulliez, E., Schmidt, P.P., Eliasson, R., Gaillard, J., Deronzier, C., Bergman, T., Gräslund, A., Reichard, P., Fontecave, M. J. Biol. Chem. (1997) [Pubmed]
  23. Recruitment of a foreign quinone into the A(1) site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. pcc 6803. Johnson, T.W., Shen, G., Zybailov, B., Kolling, D., Reategui, R., Beauparlant, S., Vassiliev, I.R., Bryant, D.A., Jones, A.D., Golbeck, J.H., Chitnis, P.R. J. Biol. Chem. (2000) [Pubmed]
  24. Insights into the quality of DnaA boxes and their cooperativity. Hansen, F.G., Christensen, B.B., Nielsen, C.B., Atlung, T. J. Mol. Biol. (2006) [Pubmed]
  25. Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Fillat, M.F., Borrias, W.E., Weisbeek, P.J. Biochem. J. (1991) [Pubmed]
  26. Reactivity, secondary structure, and molecular topology of the Escherichia coli sulfite reductase flavodoxin-like domain. Champier, L., Sibille, N., Bersch, B., Brutscher, B., Blackledge, M., Covès, J. Biochemistry (2002) [Pubmed]
  27. Role of Arg100 and Arg264 from Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer. Martínez-Júlvez, M., Hermoso, J., Hurley, J.K., Mayoral, T., Sanz-Aparicio, J., Tollin, G., Gómez-Moreno, C., Medina, M. Biochemistry (1998) [Pubmed]
 
WikiGenes - Universities