The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Ak1  -  adenylate kinase 1

Mus musculus

Synonyms: AK 1, ATP-AMP transphosphorylase 1, ATP:AMP phosphotransferase, Adenylate kinase isoenzyme 1, Adenylate monophosphate kinase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ak1


Psychiatry related information on Ak1


High impact information on Ak1


Chemical compound and disease context of Ak1


Biological context of Ak1


Anatomical context of Ak1

  • AK1 was first seen in condensing spermatids and was associated with the outer microtubular doublets and outer dense fibers of sperm [13].
  • Our results suggested that decreased AK 1 expression and activity might result in redistribution of energy flow through the alternative CK system, thus a compensatory potential might limit cellular energy failure in mdx skeletal muscle [15].
  • Deletion of the adenylate kinase gene compromised nucleotide exchange at the channel site and impeded communication between mitochondria and K(ATP) channels, rendering cellular metabolic sensing defective [17].
  • We also show enrichment of dual A-kinase anchoring protein 1 at the neuromuscular junction, suggesting that it could be responsible for RIalpha tethering at this site [18].
  • Cutting edge: A-kinase anchor proteins are involved in maintaining resting T cells in an inactive state [19].

Associations of Ak1 with chemical compounds

  • Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice [20].
  • An analysis of actomyosin complexes in vitro demonstrated that one of the consequences of M-CK and AK1 deficiency is hampered phosphoryl delivery to the actomyosin ATPase, resulting in a loss of contractile performance [20].
  • The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole muscle function at high-energy demands [21].
  • We found that AK1(-/-) muscle exhibited a diminished inosine 5'-monophosphate formation rate (14% of WT) and an inordinate accumulation of ADP ( approximately 1.5 mM) at the highest energy demands, compared with WT controls [21].
  • Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels [22].
  • Adenosine treatment bypassed AK1 deficiency and restored post-ischemic flow to wild-type levels, achieving phenotype rescue [23].

Other interactions of Ak1

  • These clones were used to localize murine Fpgs and Ak-1 to a region of this chromosome, namely 2 (cen leads to Cl) [14].
  • Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromises intracellular energetic communication and severely reduces the cellular capability to maintain total ATP turnover under muscle functional load [20].
  • Enzymatic assays demonstrated that AK 1 activity was also decreased in mdx mice [15].
  • Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity [15].
  • Moreover, in AK1(-/-) mice, fast-twitch gastrocnemius, but not slow-twitch soleus, had an increase in adenine nucleotide translocator (ANT) and mitochondrial creatine kinase protein, along with a doubling of the intermyofibrillar mitochondrial volume [24].

Analytical, diagnostic and therapeutic context of Ak1


  1. Creatine kinase, myokinase, and acetylcholinesterase activities in muscle-forming primary cultures of mouse teratocarcinoma cells. Gearhart, J.D., Mintz, B. Cell (1975) [Pubmed]
  2. Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress. Pucar, D., Janssen, E., Dzeja, P.P., Juranic, N., Macura, S., Wieringa, B., Terzic, A. J. Biol. Chem. (2000) [Pubmed]
  3. Identification of a ras-related protein in murine erythroleukemia cells that is a cAMP-dependent protein kinase substrate and is phosphorylated during chemically induced differentiation. Scheele, J.S., Pilz, R.B., Quilliam, L.A., Boss, G.R. J. Biol. Chem. (1994) [Pubmed]
  4. Adenylate kinase activity in various organs and tissues of mice with the obese-hyperglycemic syndrome (gene symbol Ob/Ob). Borglund, E., Brolin, S.E., Agren, A. J. Histochem. Cytochem. (1978) [Pubmed]
  5. Photosensitization of mitochondrial adenosine-triphosphatase and adenylate kinase by hematoporphyrin derivative in vitro. Fu, N.W., Yeh, S.Y., Chang, C., Zhao, X.H., Chang, L.S. Adv. Exp. Med. Biol. (1985) [Pubmed]
  6. Activation time of myocardial oxidative phosphorylation in creatine kinase and adenylate kinase knockout mice. Gustafson, L.A., Van Beek, J.H. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
  7. Biochemical studies on mitochondria isolated from Normal and Neoplastic Tissues of the Mouse Mammary Gland. White, M.T., Nandi, S. J. Natl. Cancer Inst. (1976) [Pubmed]
  8. Biochemical properties of simian virus 40-transformed 3T3 cell mitochondria. White, M.T., Arya, D.V., Tewari, K.K. J. Natl. Cancer Inst. (1975) [Pubmed]
  9. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. Janssen, E., Dzeja, P.P., Oerlemans, F., Simonetti, A.W., Heerschap, A., de Haan, A., Rush, P.S., Terjung, R.R., Wieringa, B., Terzic, A. EMBO J. (2000) [Pubmed]
  10. The expression of sarcomeric muscle-specific contractile protein genes in BC3H1 cells: BC3H1 cells resemble skeletal myoblasts that are defective for commitment to terminal differentiation. Taubman, M.B., Smith, C.W., Izumo, S., Grant, J.W., Endo, T., Andreadis, A., Nadal-Ginard, B. J. Cell Biol. (1989) [Pubmed]
  11. Impaired erythroid-specific gene expression in cAMP-dependent protein kinase-deficient murine erythroleukemia cells. Pilz, R.B. J. Biol. Chem. (1993) [Pubmed]
  12. ADP effects on bleomycin-induced DNA repair synthesis and adenylate kinase activity in permeable mouse sarcoma cells. Seki, S., Mori, S., Oda, T. Biochem. Int. (1989) [Pubmed]
  13. Adenylate kinases 1 and 2 are part of the accessory structures in the mouse sperm flagellum. Cao, W., Haig-Ladewig, L., Gerton, G.L., Moss, S.B. Biol. Reprod. (2006) [Pubmed]
  14. Complementation mapping in microcell hybrids: localization of Fpgs and Ak-1 on Mus musculus chromosome 2. Fournier, R.E., Moran, R.G. Somatic Cell Genet. (1983) [Pubmed]
  15. Proteomic analysis of mdx skeletal muscle: Great reduction of adenylate kinase 1 expression and enzymatic activity. Ge, Y., Molloy, M.P., Chamberlain, J.S., Andrews, P.C. Proteomics (2003) [Pubmed]
  16. Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Johnson, B.D., Scheuer, T., Catterall, W.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  17. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Carrasco, A.J., Dzeja, P.P., Alekseev, A.E., Pucar, D., Zingman, L.V., Abraham, M.R., Hodgson, D., Bienengraeber, M., Puceat, M., Janssen, E., Wieringa, B., Terzic, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  18. Muscle-regulated expression and determinants for neuromuscular junctional localization of the mouse RIalpha regulatory subunit of cAMP-dependent protein kinase. Barradeau, S., Imaizumi-Scherrer, T., Weiss, M.C., Faust, D.M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  19. Cutting edge: A-kinase anchor proteins are involved in maintaining resting T cells in an inactive state. Williams, R.O. J. Immunol. (2002) [Pubmed]
  20. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice. Janssen, E., Terzic, A., Wieringa, B., Dzeja, P.P. J. Biol. Chem. (2003) [Pubmed]
  21. Skeletal muscle contractile performance and ADP accumulation in adenylate kinase-deficient mice. Hancock, C.R., Janssen, E., Terjung, R.L. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  22. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels. Makarchikov, A.F., Wins, P., Janssen, E., Wieringa, B., Grisar, T., Bettendorff, L. Biochim. Biophys. Acta (2002) [Pubmed]
  23. Defective metabolic signaling in adenylate kinase AK1 gene knock-out hearts compromises post-ischemic coronary reflow. Dzeja, P.P., Bast, P., Pucar, D., Wieringa, B., Terzic, A. J. Biol. Chem. (2007) [Pubmed]
  24. Adenylate kinase 1 deficiency induces molecular and structural adaptations to support muscle energy metabolism. Janssen, E., de Groof, A., Wijers, M., Fransen, J., Dzeja, P.P., Terzic, A., Wieringa, B. J. Biol. Chem. (2003) [Pubmed]
  25. Gene mapping in Mus musculus by interspecific cell hybridization: assignment of the genes for tripeptidase-1 to chromosome 10, dipeptidase-2 to chromosome 18, acid phosphatase-1 to chromosome 12, and adenylate kinase-1 to chromosome 2. Francke, U., Lalley, P.A., Moss, W., Ivy, J., Minna, J.D. Cytogenet. Cell Genet. (1977) [Pubmed]
  26. Effects of ATP and other nucleotides on DNA repair synthesis in bleomycin-pretreated permeable mouse sarcoma cells. Seki, S., Mori, S., Nakashima, A., Oda, T. Carcinogenesis (1987) [Pubmed]
  27. Fluorometric microassays of adenylate kinase, an enzyme important in energy metabolism. Borglund, E., Brolin, S.E., Agren, A. Ups. J. Med. Sci. (1978) [Pubmed]
  28. Plasmodium chabaudi-infection of mice: specific activities of erythrocyte membrane-associated enzymes and patterns of proteins and glycoproteins of erythrocyte membrane preparations. Königk, E., Mirtsch, S. Tropenmedizin und Parasitologie. (1977) [Pubmed]
WikiGenes - Universities