The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ATXN1  -  ataxin 1

Homo sapiens

Synonyms: ATX1, Ataxin-1, D6S504E, SCA1, Spinocerebellar ataxia type 1 protein
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ATXN1


Psychiatry related information on ATXN1


High impact information on ATXN1


Chemical compound and disease context of ATXN1


Biological context of ATXN1


Anatomical context of ATXN1


Associations of ATXN1 with chemical compounds

  • Although the proteins containing these repeats are widely expressed, the neurodegeneration in SCA1 and other polyglutamine diseases selectively involves a few neuronal subtypes [1].
  • We developed a fast and efficient screening method based on touchdown multiplex PCR with fluorescent labelled primers for the most common types of SCAs (SCA 1, 2, 3 and 7) [29].
  • It is 54% identical to hamster CPP32/SCA-1, a cysteine protease that was earlier shown to cleave SREBPs at a conserved Asp between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain [30].
  • Magnetic resonance (MR) techniques enable in vivo measurement of the atrophy of the brainstem and cerebellum in spinocerebellar ataxia type 1 (SCA1) and 2 (SCA2) patients, which is accompanied by a decrease in the concentration of N-acetyl aspartate (NAA) or of the NAA/creatine ratio in the pons and cerebellum [31].
  • The P/Q-type voltage-dependent calcium channel as pharmacological target in spinocerebellar ataxia type 6: gabapentin and pregabalin may be of therapeutic benefit [32].

Physical interactions of ATXN1


Other interactions of ATXN1

  • These results suggest that A1Up may link ataxin-1 with the chaperone and ubiquitin-proteasome pathways [33].
  • Seven patients with SCA1 (n = 5) or SCA2 (n = 2) had morphologic changes reminiscent of OPCA, but their values were still in the lower normal range and were classified as undefined [3].
  • Our results also showed that unlike SCA 1 and SCA3/MJD, the size distribution of the normal alleles showed few polymorphisms, with the 22 repeat allele accounting for 90.1% [34].
  • Using the yeast two-hybrid system and co-immunoprecipitation experiments, we have found that p80 coilin, coiled body-specific protein, binds to ataxin-1 [35].
  • Because the population of this area had seldom moved, the alleles with SCA1 mutations (including alleles with an intermediate CAG repeat number) are assumed to have been present in this area for a long time [36].

Analytical, diagnostic and therapeutic context of ATXN1


  1. The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Matilla, A., Koshy, B.T., Cummings, C.J., Isobe, T., Orr, H.T., Zoghbi, H.Y. Nature (1997) [Pubmed]
  2. Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Koshy, B., Matilla, T., Burright, E.N., Merry, D.E., Fischbeck, K.H., Orr, H.T., Zoghbi, H.Y. Hum. Mol. Genet. (1996) [Pubmed]
  3. ADC mapping of neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias. Della Nave, R., Foresti, S., Tessa, C., Moretti, M., Ginestroni, A., Gavazzi, C., Guerrini, L., Salvi, F., Piacentini, S., Mascalchi, M. Neuroimage (2004) [Pubmed]
  4. Mapmodulin/leucine-rich acidic nuclear protein binds the light chain of microtubule-associated protein 1B and modulates neuritogenesis. Opal, P., Garcia, J.J., Propst, F., Matilla, A., Orr, H.T., Zoghbi, H.Y. J. Biol. Chem. (2003) [Pubmed]
  5. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Soong B, W., Lu Y, C., Choo K, B., Lee H, Y. Arch. Neurol. (2001) [Pubmed]
  6. The role of LANP and ataxin 1 in E4F-mediated transcriptional repression. Cvetanovic, M., Rooney, R.J., Garcia, J.J., Toporovskaya, N., Zoghbi, H.Y., Opal, P. EMBO Rep. (2007) [Pubmed]
  7. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Chamberlain, N.L., Driver, E.D., Miesfeld, R.L. Nucleic Acids Res. (1994) [Pubmed]
  8. SCA2 is not a major locus for ADCA type I in French families. Cancel, G., Stevanin, G., Dürr, A., Chneiweiss, H., Penet, C., Pothin, Y., Agid, Y., Brice, A. Am. J. Med. Genet. (1995) [Pubmed]
  9. Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. Abele, M., Bürk, K., Laccone, F., Dichgans, J., Klockgether, T. J. Neurol. (2001) [Pubmed]
  10. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Bruni, A.C., Takahashi-Fujigasaki, J., Maltecca, F., Foncin, J.F., Servadio, A., Casari, G., D'Adamo, P., Maletta, R., Curcio, S.A., De Michele, G., Filla, A., El Hachimi, K.H., Duyckaerts, C. Arch. Neurol. (2004) [Pubmed]
  11. Executive dysfunction in spinocerebellar ataxia type 1. Bürk, K., Bösch, S., Globas, C., Zühlke, C., Daum, I., Klockgether, T., Dichgans, J. Eur. Neurol. (2001) [Pubmed]
  12. Spectrin mutations cause spinocerebellar ataxia type 5. Ikeda, Y., Dick, K.A., Weatherspoon, M.R., Gincel, D., Armbrust, K.R., Dalton, J.C., Stevanin, G., Dürr, A., Zühlke, C., Bürk, K., Clark, H.B., Brice, A., Rothstein, J.D., Schut, L.J., Day, J.W., Ranum, L.P. Nat. Genet. (2006) [Pubmed]
  13. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Moseley, M.L., Zu, T., Ikeda, Y., Gao, W., Mosemiller, A.K., Daughters, R.S., Chen, G., Weatherspoon, M.R., Clark, H.B., Ebner, T.J., Day, J.W., Ranum, L.P. Nat. Genet. (2006) [Pubmed]
  14. Neurodegeneration: a case of arrested development? La Spada, A.R. Cell (2006) [Pubmed]
  15. Hosting neurotoxicity in polyglutamine disease. Liu, N., Bonini, N.M. Cell (2006) [Pubmed]
  16. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Tsai, C.C., Kao, H.Y., Mitzutani, A., Banayo, E., Rajan, H., McKeown, M., Evans, R.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  17. Striatal dopamine nerve terminal markers but not nigral cellularity are reduced in spinocerebellar ataxia type 1. Kish, S.J., Guttman, M., Robitaille, Y., el-Awar, M., Chang, L.J., Levey, A.I. Neurology (1997) [Pubmed]
  18. A family with spinocerebellar ataxia type 8 expansion and vitamin E deficiency ataxia. Cellini, E., Piacentini, S., Nacmias, B., Forleo, P., Tedde, A., Bagnoli, S., Ciantelli, M., Sorbi, S. Arch. Neurol. (2002) [Pubmed]
  19. Role of histidine interruption in mitigating the pathological effects of long polyglutamine stretches in SCA1: A molecular approach. Sen, S., Dash, D., Pasha, S., Brahmachari, S.K. Protein Sci. (2003) [Pubmed]
  20. Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Okazawa, H., Rich, T., Chang, A., Lin, X., Waragai, M., Kajikawa, M., Enokido, Y., Komuro, A., Kato, S., Shibata, M., Hatanaka, H., Mouradian, M.M., Sudol, M., Kanazawa, I. Neuron (2002) [Pubmed]
  21. Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. Mizutani, A., Wang, L., Rajan, H., Vig, P.J., Alaynick, W.A., Thaler, J.P., Tsai, C.C. EMBO J. (2005) [Pubmed]
  22. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17. Oda, M., Maruyama, H., Komure, O., Morino, H., Terasawa, H., Izumi, Y., Imamura, T., Yasuda, M., Ichikawa, K., Ogawa, M., Matsumoto, M., Kawakami, H. Arch. Neurol. (2004) [Pubmed]
  23. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Kaemmerer, W.F., Low, W.C. Exp. Neurol. (1999) [Pubmed]
  24. Clinicopathology of spinocerebellar degeneration: its correlation to the unstable CAG repeat of the affected gene. Yagishita, S., Inoue, M. Pathol. Int. (1997) [Pubmed]
  25. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Orr, H.T., Chung, M.Y., Banfi, S., Kwiatkowski, T.J., Servadio, A., Beaudet, A.L., McCall, A.E., Duvick, L.A., Ranum, L.P., Zoghbi, H.Y. Nat. Genet. (1993) [Pubmed]
  26. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Servadio, A., Koshy, B., Armstrong, D., Antalffy, B., Orr, H.T., Zoghbi, H.Y. Nat. Genet. (1995) [Pubmed]
  27. PQBP-1 transgenic mice show a late-onset motor neuron disease-like phenotype. Okuda, T., Hattori, H., Takeuchi, S., Shimizu, J., Ueda, H., Palvimo, J.J., Kanazawa, I., Kawano, H., Nakagawa, M., Okazawa, H. Hum. Mol. Genet. (2003) [Pubmed]
  28. CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. Al-Ramahi, I., Lam, Y.C., Chen, H.K., de Gouyon, B., Zhang, M., Pérez, A.M., Branco, J., de Haro, M., Patterson, C., Zoghbi, H.Y., Botas, J. J. Biol. Chem. (2006) [Pubmed]
  29. Fluorescent multiplex PCR--fast method for autosomal dominant spinocerebellar ataxias screening. Bauer, P.O., Kotliarova, S.E., Matoska, V., Musova, Z., Hedvicakova, P., Boday, A., Tomek, A., Nukina, N., Goetz, P. Genetika (2005) [Pubmed]
  30. Purification and cDNA cloning of a second apoptosis-related cysteine protease that cleaves and activates sterol regulatory element binding proteins. Pai, J.T., Brown, M.S., Goldstein, J.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  31. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Guerrini, L., Lolli, F., Ginestroni, A., Belli, G., Della Nave, R., Tessa, C., Foresti, S., Cosottini, M., Piacentini, S., Salvi, F., Plasmati, R., De Grandis, D., Siciliano, G., Filla, A., Mascalchi, M. Brain (2004) [Pubmed]
  32. The P/Q-type voltage-dependent calcium channel as pharmacological target in spinocerebellar ataxia type 6: gabapentin and pregabalin may be of therapeutic benefit. Gazulla, J., Tintor??, M.A. Med. Hypotheses (2007) [Pubmed]
  33. Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Davidson, J.D., Riley, B., Burright, E.N., Duvick, L.A., Zoghbi, H.Y., Orr, H.T. Hum. Mol. Genet. (2000) [Pubmed]
  34. Identification of five spinocerebellar ataxia type 2 pedigrees in patients with autosomal dominant cerebellar ataxia in Taiwan. Hsieh, M., Li, S.Y., Tsai, C.J., Chen, Y.Y., Liu, C.S., Chang, C.Y., Ro, L.S., Chen, D.F., Chen, S.S., Li, C. Acta neurologica Scandinavica. (1999) [Pubmed]
  35. p80 coilin, a coiled body-specific protein, interacts with ataxin-1, the SCA1 gene product. Hong, S., Ka, S., Kim, S., Park, Y., Kang, S. Biochim. Biophys. Acta (2003) [Pubmed]
  36. High prevalence of spinocerebellar ataxia type 1 (SCA1) in an isolated region of Japan. Onodera, Y., Aoki, M., Tsuda, T., Kato, H., Nagata, T., Kameya, T., Abe, K., Itoyama, Y. J. Neurol. Sci. (2000) [Pubmed]
  37. Sequence variation and size ranges of CAG repeats in the Machado-Joseph disease, spinocerebellar ataxia type 1 and androgen receptor genes. Rubinsztein, D.C., Leggo, J., Coetzee, G.A., Irvine, R.A., Buckley, M., Ferguson-Smith, M.A. Hum. Mol. Genet. (1995) [Pubmed]
  38. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Schöls, L., Amoiridis, G., Büttner, T., Przuntek, H., Epplen, J.T., Riess, O. Ann. Neurol. (1997) [Pubmed]
WikiGenes - Universities