The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

uviB  -  UviB protein

Clostridium perfringens

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of uviB

 

High impact information on uviB

 

Chemical compound and disease context of uviB

 

Biological context of uviB

  • In addition to bacteriocin production, BGMN1-5 synthesized a cell envelope-associated proteinase (CEP) and shows an aggregation phenotype [1].
  • In contrast, all of the toxigenic isolates continued to carry the resident plasmid and to produce both bacteriocin and type G neurotoxin [12].
  • Amino acid sequencing showed that the compound is a class IIa bacteriocin with an N-terminal amino acid sequence identical to that of carnobacteriocin B2 [13].
  • Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752 [14].
  • Cloning, nucleotide sequence, and expression of the gene encoding the bacteriocin boticin B from Clostridium botulinum strain 213B [15].
 

Anatomical context of uviB

  • Bacteriocin typing of Clostridium perfringens in human feces [16].
  • The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner [17].
  • Two major categories of bacteriocin appear to exist for this species: those bacteriocins which block the incorporation of DNA, RNA, and protein precursors and those which interfere with the organism's cell wall [18].
 

Associations of uviB with chemical compounds

  • Purified bacteriocin bound to partially purified RNA polymerase, and both proteins were cosedimented in a glycerol gradient [8].
  • Mes52A is a class IIa bacteriocin of lactic acid bacteria with a broad spectrum of activity [19].
  • It was shown to be a 2,675-Da bacteriocin harboring a lanthionine structure [20].
  • If the glucose concentration of the minimal medium was increased from 2 to 7 mg mL(-1), the effect of lag time was diminished and bacteriocin-producing isolates once again dominated the coculture [21].
  • The bacteriocin was purified by precipitation with ammonium sulfate, ion-exchange (SP Sepharose) and reverse phase chromatography [22].
 

Analytical, diagnostic and therapeutic context of uviB

  • Passive bacteriocin typing of strains of Clostridium perfringens type A causing food poisoning for epidemiologic studies [23].
  • PCR based on repetitive DNA sequences indicated that S. bovis HC5 was not simply transferring bacteriocin genes to S. bovis JB1 [21].
  • The Bac+ isolates were identified by carbohydrate fermentation patterns, SDS-PAGE protein patterns, and other biochemical characteristics; SDS-PAGE proved invaluable in identifying strains that could not be identified by other means [24].
  • Strain differentiation of Clostridium perfringens by bacteriocin typing, plasmid profiling and ribotyping [25].
  • New tools such as agglutination test with antispore serum, precipitin-in-gel test with anti-enterotoxin serum, active and passive bacteriocin, bacteriophage and biotyping have been developed using standard strains and isolates of c. perfringens type A from foods, food poisoning and others [26].

References

  1. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Topisirovic, L., Kojic, M., Fira, D., Golic, N., Strahinic, I., Lozo, J. Int. J. Food Microbiol. (2006) [Pubmed]
  2. Characterization of a bacteriocin, Thermophilin 1277, produced by Streptococcus thermophilus SBT1277. Kabuki, T., Uenishi, H., Watanabe, M., Seto, Y., Nakajima, H. J. Appl. Microbiol. (2007) [Pubmed]
  3. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Mani, N., Dupuy, B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Epidemiology of Clostridium difficile colonization in newborns: results using a bacteriophage and bacteriocin typing system. Bacon, A.E., Fekety, R., Schaberg, D.R., Faix, R.G. J. Infect. Dis. (1988) [Pubmed]
  5. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Dupuy, B., Raffestin, S., Matamouros, S., Mani, N., Popoff, M.R., Sonenshein, A.L. Mol. Microbiol. (2006) [Pubmed]
  6. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Dupuy, B., Mani, N., Katayama, S., Sonenshein, A.L. Mol. Microbiol. (2005) [Pubmed]
  7. Epidemiology of colitis induced by Clostridium difficile in hamsters: application of a bacteriophage and bacteriocin typing system. Hawkins, C.C., Buggy, B.P., Fekety, R., Schaberg, D.R. J. Infect. Dis. (1984) [Pubmed]
  8. Inhibition of ribonucleic acid polymerase by a bacteriocin from Bacteroides fragilis. Mossie, K.G., Robb, F.T., Jones, D.T., Woods, D.R. Antimicrob. Agents Chemother. (1981) [Pubmed]
  9. Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Okereke, A., Montville, T.J. Appl. Environ. Microbiol. (1991) [Pubmed]
  10. Characterization of bacteriocin 28 produced by Clostridium perfringens. Li, A.W., Verpoorte, J.A., Lewis, R.G., Mahony, D.E. Can. J. Microbiol. (1982) [Pubmed]
  11. Identification and characteristics of nisin Z-producing Lactococcus lactis subsp. lactis isolated from Kimchi. Park, S.H., Itoh, K., Kikuchi, E., Niwa, H., Fujisawa, T. Curr. Microbiol. (2003) [Pubmed]
  12. Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Eklund, M.W., Poysky, F.T., Mseitif, L.M., Strom, M.S. Appl. Environ. Microbiol. (1988) [Pubmed]
  13. Role of acetate in production of an autoinducible class IIa bacteriocin in Carnobacterium piscicola A9b. Nilsson, L., Nielsen, M.K., Ng, Y., Gram, L. Appl. Environ. Microbiol. (2002) [Pubmed]
  14. Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Kemperman, R., Jonker, M., Nauta, A., Kuipers, O.P., Kok, J. Appl. Environ. Microbiol. (2003) [Pubmed]
  15. Cloning, nucleotide sequence, and expression of the gene encoding the bacteriocin boticin B from Clostridium botulinum strain 213B. Dineen, S.S., Bradshaw, M., Johnson, E.A. Appl. Environ. Microbiol. (2000) [Pubmed]
  16. Bacteriocin typing of Clostridium perfringens in human feces. Mahony, D.E., Swantee, C.A. J. Clin. Microbiol. (1978) [Pubmed]
  17. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. van Belkum, M.J., Kok, J., Venema, G., Holo, H., Nes, I.F., Konings, W.N., Abee, T. J. Bacteriol. (1991) [Pubmed]
  18. A simple device for growing Clostridium perfringens and its application in bacteriocin studies. Mahony, D.E. Can. J. Microbiol. (1982) [Pubmed]
  19. Variations in the membrane fatty acid composition of resistant or susceptible Leuconostoc or Weissella strains in the presence or absence of Mesenterocin 52A and Mesenterocin 52B produced by Leuconostoc mesenteroides subsp. mesenteroides FR52. Limonet, M., Revol-Junelles, A.M., Millière, J.B. Appl. Environ. Microbiol. (2002) [Pubmed]
  20. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Dabard, J., Bridonneau, C., Phillipe, C., Anglade, P., Molle, D., Nardi, M., Ladiré, M., Girardin, H., Marcille, F., Gomez, A., Fons, M. Appl. Environ. Microbiol. (2001) [Pubmed]
  21. Bacterial competition between a bacteriocin-producing and a bacteriocin-negative strain of Streptococcus bovis in batch and continuous culture. Xavier, B.M., Russell, J.B. FEMS Microbiol. Ecol. (2006) [Pubmed]
  22. Characterization, production, and purification of leucocin H, a two-peptide bacteriocin from Leuconostoc MF215B. Blom, H., Katla, T., Holck, A., Sletten, K., Axelsson, L., Holo, H. Curr. Microbiol. (1999) [Pubmed]
  23. Passive bacteriocin typing of strains of Clostridium perfringens type A causing food poisoning for epidemiologic studies. Satija, K.C., Narayan, K.G. J. Infect. Dis. (1980) [Pubmed]
  24. Detection, identification and characterization of bacteriocin-producing lactic acid bacteria from retail food products. Garver, K.I., Muriana, P.M. Int. J. Food Microbiol. (1993) [Pubmed]
  25. Strain differentiation of Clostridium perfringens by bacteriocin typing, plasmid profiling and ribotyping. Schalch, B., Eisgruber, H., Schau, H.P., Wiedmann, M., Stolle, A. Zentralblatt Veterinarmedizin Reihe B (1998) [Pubmed]
  26. Food borne infection with Clostridium perfringens type A. Narayan, K.G. International journal of zoonoses. (1982) [Pubmed]
 
WikiGenes - Universities