The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1O3SQO     azanylidynesilicon

Synonyms: 12033-60-2, 29082-44-8, 68034-42-4, EINECS 234-787-9, Silicon nitride (SiN)
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of nitridosilicon

  • Experimentally measured force-extension curves revealed a unique pair of "sawtooth" features that were present when a bond formed between a silicon nitride surface (atomic force microscopy tip) and E. coli cells expressing the OmpA-AmCyan protein [1].
  • In this study, the authors attempted to correlate microscopic adhesion of a collection of nine Streptococcus mitis strains to the negatively charged, hydrophilic silicon nitride tip of an atomic force microscope (AFM) with macroscopic adhesion of the strains to a negatively charged, hydrophilic glass in a parallel-plate flow chamber [2].
  • We present qualitative detection of specific Salmonella enterica strains using a functionalized silicon nitride microcantilever [3].

High impact information on nitridosilicon

  • We have produced single, synthetic nanometer-diameter pores by using a tightly focused, high-energy electron beam to sputter atoms in 10-nm-thick silicon nitride membranes [4].
  • In this report we characterized the longitudinal elasticity of single actin filaments manipulated by novel silicon-nitride microfabricated levers [5].
  • Adherent mouse fibroblast cells were grown on silicon nitride windows serving as biocompatible XRF support substrate, and labeled with FluoroNanogold in combination with primary antibodies specific for mitochondria or the Golgi apparatus, respectively [6].
  • Nevertheless, a small group of materials, incorporating substantial amounts of quartz or silicon nitride filler particles, exhibited high rates of thermal diffusion, up to three times the level exhibited by dentin [7].
  • Force/distance curves for silicon nitride tip/flat silica or alumina coated by a layer of mixed micelles of cationic/anionic surfactant are measured by using AFM [8].

Chemical compound and disease context of nitridosilicon


Biological context of nitridosilicon

  • The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8(TM) photoresist, were evaluated using the cage implant system [10].
  • Atomic force microscopy (AFM) was used to investigate both bacterial surface characteristics and adhesion forces between a probe surface (silicon nitride) and the bacteria, providing a direct evaluation of bacterial adhesion and interaction forces [11].
  • Micromechanical measurement of active sites on silicon nitride using surface free energy variation [12].
  • Lipid adsorption kinetics was primarily studied on plain silicon supports in an ellipsometric cell or on a silicon nitride surface in a resonant mirror system (IAsys), using the systematic approach [13].
  • This study attempts to investigate the cytotoxicity of different qualities of industrial silicon nitride ceramics applying an L929-cell culture model in a direct contact assay combined with a cell viability assessment [14].

Anatomical context of nitridosilicon


Associations of nitridosilicon with other chemical compounds


Gene context of nitridosilicon

  • OPN protein was covalently bound to silicon nitride AFM tips and adsorption and adhesion forces were measured in an electrolyte with a composition similar to that of physiological fluids [23].
  • Proinflammatory cytokine expression of IL-1beta and TNF-alpha by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro [24].
  • In this second part, cumulative particle size distributions of silicon and silicon nitride agglomerates, produced in a laser reactor, were determined from TEM pictures and compared to the distributions calculated from this self-preserving theory for power law particles [25].
  • Biological-to-electronic interface with pores of ATP synthase subunit C in silicon nitride barrier [26].
  • The cMEAs have 50 or 60 microm center-to-center inter-electrode distances and were manufactured on glass substrates by photolithographically defining ITO leads, insulating them with silicon nitride and SU-8 2000 epoxy-based photoresist and coating the etched electrode tips with gold or platinum [27].

Analytical, diagnostic and therapeutic context of nitridosilicon


  1. Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. Lower, B.H., Yongsunthon, R., Vellano, F.P., Lower, S.K. J. Bacteriol. (2005) [Pubmed]
  2. Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. Vadillo-Rodríguez, V., Busscher, H.J., Norde, W., de Vries, J., van der Mei, H.C. Microbiology (Reading, Engl.) (2004) [Pubmed]
  3. A microcantilever-based pathogen detector. Weeks, B.L., Camarero, J., Noy, A., Miller, A.E., Stanker, L., De Yoreo, J.J. Scanning. (2003) [Pubmed]
  4. Electrolytic transport through a synthetic nanometer-diameter pore. Ho, C., Qiao, R., Heng, J.B., Chatterjee, A., Timp, R.J., Aluru, N.R., Timp, G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  5. Mechanics of F-actin characterized with microfabricated cantilevers. Liu, X., Pollack, G.H. Biophys. J. (2002) [Pubmed]
  6. Correlative microXRF and optical immunofluorescence microscopy of adherent cells labeled with ultrasmall gold particles. McRae, R., Lai, B., Vogt, S., Fahrni, C.J. J. Struct. Biol. (2006) [Pubmed]
  7. Thermal diffusivity of composite restorative materials. Watts, D.C., McAndrew, R., Lloyd, C.H. J. Dent. Res. (1987) [Pubmed]
  8. Effect of the chain-length compatibility of surfactants and mechanical properties of mixed micelles on surfaces. Rabinovich, Y.I., Pandey, S., Shah, D.O., Moudgil, B.M. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  9. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Abu-Lail, N.I., Camesano, T.A. Environ. Sci. Technol. (2003) [Pubmed]
  10. Biocompatibility and biofouling of MEMS drug delivery devices. Voskerician, G., Shive, M.S., Shawgo, R.S., von Recum, H., Anderson, J.M., Cima, M.J., Langer, R. Biomaterials (2003) [Pubmed]
  11. Role of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli. Liu, Y., Black, M.A., Caron, L., Camesano, T.A. Biotechnol. Bioeng. (2006) [Pubmed]
  12. Micromechanical measurement of active sites on silicon nitride using surface free energy variation. Stephan, A.C., Finot, E.L., Ji, H.F., Pinnaduwage, L.A., Thundat, T. Ultramicroscopy. (2002) [Pubmed]
  13. Planar lipid bilayers on solid supports from liposomes--factors of importance for kinetics and stability. Puu, G., Gustafson, I. Biochim. Biophys. Acta (1997) [Pubmed]
  14. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro. Neumann, A., Reske, T., Held, M., Jahnke, K., Ragoss, C., Maier, H.R. Journal of materials science. Materials in medicine. (2004) [Pubmed]
  15. Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays. Manos, P., Pancrazio, J.J., Coulombe, M.G., Ma, W., Stenger, D.A. Neurosci. Lett. (1999) [Pubmed]
  16. Cell membranes suspended across nanoaperture arrays. Danelon, C., Perez, J.B., Santschi, C., Brugger, J., Vogel, H. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  17. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Kue, R., Sohrabi, A., Nagle, D., Frondoza, C., Hungerford, D. Biomaterials (1999) [Pubmed]
  18. In vitro effects of fibrous and nonfibrous silicon nitride on bovine pulmonary macrophages. Fisher, G.L., McNeill, K.L., Smith, J.T. Environmental research. (1989) [Pubmed]
  19. Covalent immobilization of protein monolayers for biosensor applications. Williams, R.A., Blanch, H.W. Biosensors & bioelectronics. (1994) [Pubmed]
  20. Study of Surface Forces Dependence on pH by Atomic Force Microscopy. Gavoille, J., Takadoum, J. Journal of colloid and interface science. (2002) [Pubmed]
  21. AFM study of forces between silica, silicon nitride and polyurethane pads. Sokolov, I., Ong, Q.K., Shodiev, H., Chechik, N., James, D., Oliver, M. Journal of colloid and interface science. (2006) [Pubmed]
  22. Flux stabilization of silicon nitride microsieves by backpulsing and surface modification with PEG moieties. Gironès, M., Bolhuis-Versteeg, L.A., Lammertink, R.G., Wessling, M. Journal of colloid and interface science. (2006) [Pubmed]
  23. Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces. Pietak, A.M., Sayer, M. Biomaterials (2006) [Pubmed]
  24. Proinflammatory cytokine expression of IL-1beta and TNF-alpha by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro. Sohrabi, A., Holland, C., Kue, R., Nagle, D., Hungerford, D.S., Frondoza, C.G. J. Biomed. Mater. Res. (2000) [Pubmed]
  25. The Self-Preserving Size Distribution Theory II. Comparison with Experimental Results for Si and Si(3)N(4) Aerosols. Dekkers, P.J., Tuinman, I.L., Marijnissen, J.C., Friedlander, S.K., Scarlett, B. Journal of colloid and interface science. (2002) [Pubmed]
  26. Biological-to-electronic interface with pores of ATP synthase subunit C in silicon nitride barrier. McGeoch, J.E., McGeoch, M.W., Carter, D.J., Shuman, R.F., Guidotti, G. Medical & biological engineering & computing. (2000) [Pubmed]
  27. Custom-designed high-density conformal planar multielectrode arrays for brain slice electrophysiology. Gholmieh, G., Soussou, W., Han, M., Ahuja, A., Hsiao, M.C., Song, D., Tanguay, A.R., Berger, T.W. J. Neurosci. Methods (2006) [Pubmed]
  28. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Park, N.M., Choi, C.J., Seong, T.Y., Park, S.J. Phys. Rev. Lett. (2001) [Pubmed]
  29. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Shoffner, M.A., Cheng, J., Hvichia, G.E., Kricka, L.J., Wilding, P. Nucleic Acids Res. (1996) [Pubmed]
  30. A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Misiakos, K., Kakabakos, S.E., Petrou, P.S., Ruf, H.H. Anal. Chem. (2004) [Pubmed]
  31. Localized neurotransmitter release for use in a prototype retinal interface. Peterman, M.C., Bloom, D.M., Lee, C., Bent, S.F., Marmor, M.F., Blumenkranz, M.S., Fishman, H.A. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  32. Development of an array of ion-selective microelectrodes aimed for the monitoring of extracellular ionic activities. Guenat, O.T., Generelli, S., de Rooij, N.F., Koudelka-Hep, M., Berthiaume, F., Yarmush, M.L. Anal. Chem. (2006) [Pubmed]
WikiGenes - Universities