The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Corneal Diseases

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Corneal Diseases

 

High impact information on Corneal Diseases

  • The evolution of the corneal disease during treatment and follow-up was evaluated by slit-lamp examination, photography, fluorescein-dye testing, and tests of corneal sensitivity and best corrected visual acuity [6].
  • Treatment decreased corneal disease severity and reduced significantly the number of B7-positive cells as well as the recruitment and activation of CD4(+) T cells in the cornea [7].
  • A combination of subconjunctival and i.p. administration of IL-1beta polyclonal Ab significantly reduced corneal disease [8].
  • Systemic neutralization of IL-2 after the onset of corneal disease resulted in a rapid regression of inflammation and complete resolution in 50% of the treated mice [9].
  • CONCLUSIONS: Bacterial toxins, and especially alpha-toxin, can mediate corneal disease in mice [10].
 

Chemical compound and disease context of Corneal Diseases

 

Biological context of Corneal Diseases

  • RESULTS: For the cytotoxic strain, mutation of either exoU or exoT alone had little effect on virulence, whereas simultaneous mutation of both exoT and exoU or of exsA resulted in a significantly reduced capacity to cause corneal disease [16].
  • Beside oncology, new therapeutic applications of SS analogs could be presumed among others in ophthalmology; it concerns the treatment of progressive Graves-Basedow ophtalmopathy, diabetic retinopathy, glaucoma and corneal diseases connected with corneal vascularization [17].
 

Anatomical context of Corneal Diseases

 

Gene context of Corneal Diseases

 

Analytical, diagnostic and therapeutic context of Corneal Diseases

References

  1. Interleukin 4 and T helper type 2 cells are required for development of experimental onchocercal keratitis (river blindness). Pearlman, E., Lass, J.H., Bardenstein, D.S., Kopf, M., Hazlett, F.E., Diaconu, E., Kazura, J.W. J. Exp. Med. (1995) [Pubmed]
  2. A therapeutic vaccine that reduces recurrent herpes simplex virus type 1 corneal disease. Nesburn, A.B., Burke, R.L., Ghiasi, H., Slanina, S.M., Wechsler, S.L. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
  3. Effect of famciclovir on herpes simplex virus type 1 corneal disease and establishment of latency in rabbits. Loutsch, J.M., Sainz, B., Marquart, M.E., Zheng, X., Kesavan, P., Higaki, S., Hill, J.M., Tal-Singer, R. Antimicrob. Agents Chemother. (2001) [Pubmed]
  4. Herpes simplex virus infections of the eye and their management with acyclovir. Falcon, M.G. J. Antimicrob. Chemother. (1983) [Pubmed]
  5. Altered type VI collagen synthesis by keratoconus keratocytes in vitro. Chwa, M., Kenney, M.C., Khin, H., Brown, D.J. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  6. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. Lambiase, A., Rama, P., Bonini, S., Caprioglio, G., Aloe, L. N. Engl. J. Med. (1998) [Pubmed]
  7. B7/CD28 costimulation is critical in susceptibility to Pseudomonas aeruginosa corneal infection: a comparative study using monoclonal antibody blockade and CD28-deficient mice. Hazlett, L.D., McClellan, S., Barrett, R., Rudner, X. J. Immunol. (2001) [Pubmed]
  8. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. Rudner, X.L., Kernacki, K.A., Barrett, R.P., Hazlett, L.D. J. Immunol. (2000) [Pubmed]
  9. Proinflammatory functions of IL-2 in herpes simplex virus corneal infection. Tang, Q., Chen, W., Hendricks, R.L. J. Immunol. (1997) [Pubmed]
  10. Effects of toxin production in a murine model of Staphylococcus aureus keratitis. Girgis, D.O., Sloop, G.D., Reed, J.M., O'Callaghan, R.J. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  11. Altered antigenicity of keratan sulfate proteoglycan in selected corneal diseases. Funderburgh, J.L., Funderburgh, M.L., Rodrigues, M.M., Krachmer, J.H., Conrad, G.W. Invest. Ophthalmol. Vis. Sci. (1990) [Pubmed]
  12. Herpetic keratitis in experimental vitamin A deficiency. Hatchell, D.L., O'Brien, W.J., Taylor, J.L., Hyndiuk, R.A. Invest. Ophthalmol. Vis. Sci. (1987) [Pubmed]
  13. Oral antiviral drugs in experimental herpes simplex keratitis. Kaufman, H.E., Varnell, E.D., Centifanto-Fitzgerald, Y.M., De Clercq, E., Kissling, G.E. Antimicrob. Agents Chemother. (1983) [Pubmed]
  14. Three cases of corneal melting after instillation of a new nonsteroidal anti-inflammatory drug. Asai, T., Nakagami, T., Mochizuki, M., Hata, N., Tsuchiya, T., Hotta, Y. Cornea (2006) [Pubmed]
  15. Vitamin A is present as retinol in the tears of humans and rabbits. Ubels, J.L., MacRae, S.M. Curr. Eye Res. (1984) [Pubmed]
  16. Contribution of ExsA-regulated factors to corneal infection by cytotoxic and invasive Pseudomonas aeruginosa in a murine scarification model. Lee, E.J., Cowell, B.A., Evans, D.J., Fleiszig, S.M. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  17. Perspectives of new potential therapeutic applications of somatostatin analogs. Pawlikowski, M., Melen-Mucha, G. Neuro Endocrinol. Lett. (2003) [Pubmed]
  18. Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10. Tumpey, T.M., Cheng, H., Yan, X.T., Oakes, J.E., Lausch, R.N. J. Leukoc. Biol. (1998) [Pubmed]
  19. Detection of herpes simplex viral DNA in the iridocorneal endothelial syndrome. Alvarado, J.A., Underwood, J.L., Green, W.R., Wu, S., Murphy, C.G., Hwang, D.G., Moore, T.E., O'Day, D. Arch. Ophthalmol. (1994) [Pubmed]
  20. Clinical, electron microscopic, and immunohistochemical study of the corneal endothelium and Descemet's membrane in the iridocorneal endothelial syndrome. Rodrigues, M.M., Stulting, R.D., Waring, G.O. Am. J. Ophthalmol. (1986) [Pubmed]
  21. Distribution of TFF peptides in corneal disease and pterygium. Steven, P., Schäfer, G., Nölle, B., Hinz, M., Hoffmann, W., Paulsen, F. Peptides (2004) [Pubmed]
  22. Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. Lambiase, A., Manni, L., Bonini, S., Rama, P., Micera, A., Aloe, L. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  23. Delineation of a 1-cM region on distal 5q containing the locus for corneal dystrophies Groenouw type I and lattice type I and exclusion of the candidate genes SPARC and LOX. Korvatska, E., Munier, F.L., Zografos, L., Ahmad, F., Faggioni, R., Dolivo-Beuret, A., Uffer, S., Pescia, G., Schorderet, D.F. Eur. J. Hum. Genet. (1996) [Pubmed]
  24. Proteome profiling of corneal epithelium and identification of marker proteins for keratoconus, a pilot study. Nielsen, K., Vorum, H., Fagerholm, P., Birkenkamp-Demtröder, K., Honoré, B., Ehlers, N., Orntoft, T.F. Exp. Eye Res. (2006) [Pubmed]
  25. Ocular surface findings in Hallopeau-Siemens subtype of dystrophic epidermolysis bullosa: report of a case and literature review. Matsumoto, Y., Dogru, M., Tsubota, K. Cornea (2005) [Pubmed]
  26. Clinical experience with butyl-2-cyanoacrylate adhesive in the management of canine and feline corneal disease. Watté, C.M., Elks, R., Moore, D.L., McLellan, G.J. Veterinary ophthalmology. (2004) [Pubmed]
 
WikiGenes - Universities