The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PubChem22385     2-nitrobenzoic acid

Synonyms: SureCN78205, CHEMBL114719, NSC-9576, AC-652, ACMC-1ASVT, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC 9576

 

High impact information on NSC 9576

  • We have now extended this study to include antibodies prepared against the "head" (S1) and "rod" portions of myosin, as well as the alkali- and 5,5'dithiobis (2-nitrobenzoic acid) (DTNB)-light chains [5].
  • The enzyme alpha-amino-beta-carboxy-muconic-epsilon-semialdehyde decarboxylase (ACMSD) plays an important role in the biodegradation of 2-nitrobenzoic acid in microorganisms and in tryptophan catabolism in humans [6].
  • SX is described by the same model except at very low denaturant concentrations and when the bulky labeling reagent 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) is used [7].
  • Mitochondrial thioredoxin reductase, in addition to its natural substrate thioredoxin, is also able to reduce chemically unrelated compounds such as 5,5 '-dithiobis (2-nitrobenzoic acid), selenite, and alloxan; the enzyme is inhibited by classical inhibitors of the cytosolic enzyme such as 1-chloro-2,4-dinitrobenzene and 13-cis-retinoic acid [1].
  • Reaction of the denatured enzyme with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) reveals 10 sulfhydryl groups/subunit [8].
 

Chemical compound and disease context of NSC 9576

 

Biological context of NSC 9576

 

Anatomical context of NSC 9576

  • In the presence of various pyridine nucleotide-dependent substrates, mitochondria are able to reduce the disulfide 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) to an extent far larger than that calculated from the theoretical amount of total mitochondrial thiol groups, indicating the occurrence of a catalytic system [15].
  • The sulfhydryl reagent 5, 5'-dithiobis (2-nitrobenzoic acid) (DTNB) was used to study the functional role of an exofacial sulfhydryl group on the human erythrocyte hexose carrier [16].
  • Incubation of GSNO or albSNO (1muM) with the megakaryocyte cell line MEG-01 resulted in a cell-mediated removal of each compound which was inhibited by blocking cell surface thiols with 5,5'-dithiobis 2-nitrobenzoic acid (DTNB) (100muM) or inhibiting PDI with bacitracin (5mM) [17].
  • On the other hand, treatment of the microsome fraction with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) increased the apparent affinity of agonist, but not antagonist [18].
 

Associations of NSC 9576 with other chemical compounds

 

Gene context of NSC 9576

  • The oxidizing reagent 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) acting at NMDA receptors redox sites decreases NMDA receptor-mediated responses by half and suppresses evoked epileptiform discharges [23].
  • The di-thiol reagent, 5,5'-dithiobis (2-nitrobenzoic acid) is shown to induce disulfide bond formation between Mercenaria regulatory light-chain Cys-55 sites on either head of scallop hybrid myosin [24].
  • 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) increased the ACh-binding to about 1.5 pmole/mg protein [25].
  • We also show that treating R-cognin and chicken PDI with the thioreductase inhibitor 5,5'-dithio-bis (2-nitrobenzoic acid), which covalently binds to the functional cysteines of the thioreductase active sites, reduces the enhancement of cell aggregation [26].
  • (3) When 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) was used to induce disulfide bond formation and subsequent inactivation of PEPCK, reactivation experiments with GSH/DTT but not with vitamin C restored full enzyme activity [27].
 

Analytical, diagnostic and therapeutic context of NSC 9576

References

  1. Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Rigobello, M.P., Callegaro, M.T., Barzon, E., Benetti, M., Bindoli, A. Free Radic. Biol. Med. (1998) [Pubmed]
  2. New way to isolate simian virus 40 nucleoprotein complexes from infected cells: use of a thiol-specific reagent. Boyce, F.M., Sundin, O., Barsoum, J., Varshavsky, A. J. Virol. (1982) [Pubmed]
  3. Free thiol groups are essential for infectivity of human cytomegalovirus. Mirazimi, A., Mousavi-Jazi, M., Sundqvist, V.A., Svensson, L. J. Gen. Virol. (1999) [Pubmed]
  4. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H., Lau, P.C. Appl. Environ. Microbiol. (2003) [Pubmed]
  5. Distribution of myosin isoenzymes among skeletal muscle fiber types. Gauthier, G.F., Lowey, S. J. Cell Biol. (1979) [Pubmed]
  6. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. Li, T., Walker, A.L., Iwaki, H., Hasegawa, Y., Liu, A. J. Am. Chem. Soc. (2005) [Pubmed]
  7. On the nature of conformational openings: native and unfolded-state hydrogen and thiol-disulfide exchange studies of ferric aquomyoglobin. Feng, Z., Butler, M.C., Alam, S.L., Loh, S.N. J. Mol. Biol. (2001) [Pubmed]
  8. Pyruvate carboxylase from a thermophilic Bacillus: some molecular characteristics. Libor, S., Sundaram, T.K., Warwick, R., Chapman, J.A., Grundy, S.M. Biochemistry (1979) [Pubmed]
  9. The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Krnajski, Z., Gilberger, T.W., Walter, R.D., Müller, S. Mol. Biochem. Parasitol. (2001) [Pubmed]
  10. Sulfhydryl oxidation reduces hippocampal susceptibility to hypoxia-induced spreading depression by activating BK channels. Hepp, S., Gerich, F.J., Müller, M. J. Neurophysiol. (2005) [Pubmed]
  11. Construction, separation and properties of hybrid hexamers of glutamate dehydrogenase in which five of the six subunits are contributed by the catalytically inert D165S. Hayden, B.M., Engel, P.C. Eur. J. Biochem. (2001) [Pubmed]
  12. Hemoglobins with multiple reactive sulphydryl groups: the reaction of dog hemoglobin with 5,5'-dithiobis (2-nitrobenzoate). Okonjo, K.O., Adejoro, I.A. J. Protein Chem. (1993) [Pubmed]
  13. Dependence of reaction rate of 5,5'-dithiobis-(2-nitrobenzoic acid) to free sulfhydryl groups of bovine serum albumin and ovalbumin on the protein conformations. Takeda, K., Shigemura, A., Hamada, S., Gu, W., Fang, D., Sasa, K., Hachiya, K. J. Protein Chem. (1992) [Pubmed]
  14. Peptide thioester substrates for serine peptidases and metalloendopeptidases. Powers, J.C., Kam, C.M. Meth. Enzymol. (1995) [Pubmed]
  15. Inhibition of rat liver mitochondrial permeability transition by respiratory substrates. Rigobello, M.P., Turcato, F., Bindoli, A. Arch. Biochem. Biophys. (1995) [Pubmed]
  16. Inhibition of hexose transport in the human erythrocyte by 5, 5'-dithiobis(2-nitrobenzoic acid): role of an exofacial carrier sulfhydryl group. May, J.M. J. Membr. Biol. (1989) [Pubmed]
  17. Interactions between cell surface protein disulphide isomerase and S-nitrosoglutathione during nitric oxide delivery. Shah, C.M., Bell, S.E., Locke, I.C., Chowdrey, H.S., Gordge, M.P. Nitric Oxide (2007) [Pubmed]
  18. Effect of urea-treatment on agonist binding affinity of the muscarinic acetylcholine receptor. Matsumoto, K., Uchida, S., Higuchi, H., Mizushima, A., Yoshida, H. Life Sci. (1983) [Pubmed]
  19. Kinetics of conjugation and oxidation of nitrobenzyl alcohols by rat hepatic enzymes. Rickert, D.E., deBethizy, J.D., Glover, M.R., Kedderis, G.L. Biochem. Pharmacol. (1985) [Pubmed]
  20. Exploitation of electrostatic field force for immobilization and catalytic reduction of o-nitrobenzoic acid to anthranilic acid on resin-bound silver nanocomposites. Jana, S., Pande, S., Panigrahi, S., Praharaj, S., Basu, S., Pal, A., Pal, T. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  21. The increased negative charge of prealbumin in cerebrospinal fluid is acquired in vitro by oxidation of the cysteinyl residues without formation of disulphides. Felding, P., Fex, G. Scand. J. Clin. Lab. Invest. (1984) [Pubmed]
  22. Development of an improved in vitro activity assay for medium chain length PHA polymerases based on CoenzymeA release measurements. de Roo, G., Ren, Q., Witholt, B., Kessler, B. J. Microbiol. Methods (2000) [Pubmed]
  23. Epileptiform activity but not synaptic plasticity is blocked by oxidation of NMDA receptors in a chronic model of temporal lobe epilepsy. Quesada, O., Hirsch, J.C., Gozlan, H., Ben-Ari, Y., Bernard, C. Epilepsy Res. (1997) [Pubmed]
  24. Regulatory light-chain Cys-55 sites on the two heads of myosin can come within 2A of each other. Bower, S.M., Wang, Y., Chantler, P.D. FEBS Lett. (1992) [Pubmed]
  25. Muscarinic cholinergic receptors in mammalian brain: differences between bindings of acetylcholine and atropine. Uchida, S., Takeyasu, K., Ichida, S., Yoshida, H. Jpn. J. Pharmacol. (1978) [Pubmed]
  26. Thioreductase activity of retina cognin and its role in cell adhesion. Pariser, H.P., Rakeman, A.S., Hausman, R.E. Brain Res. Dev. Brain Res. (1998) [Pubmed]
  27. Effects of vitamin C on phosphoenolpyruvate carboxykinase from rat liver. Maggini, S., Walter, P. International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition. (1997) [Pubmed]
  28. Involvement of a disulfide bridge in catalytic activity of camel lens xi-crystallin. Duhaiman, A.S., Rabbani, N. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  29. Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of beta-lactoglobulin: their role in heat-induced sol-gel state transition. Relkin, P. Int. J. Biol. Macromol. (1998) [Pubmed]
 
WikiGenes - Universities