The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PSEUDOURIDINE     5-[(2R,3R,4S,5R)-3,4- dihydroxy-5...

Synonyms: y-Uridine, psi-Uridine, CPD-497, SureCN64635, CHEBI:17802, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PSEUDOURIDINE

 

High impact information on PSEUDOURIDINE

  • Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA [5].
  • Dyskerin is a putative pseudouridine synthase, and it has been suggested that DKC may be caused by a defect in ribosomal RNA processing [6].
  • We also show that X-linked DC patient cells averted from premature senescence support normal levels of rRNA pseudouridine modification and normal kinetics of rRNA precursor processing, in contrast with phenotypes reported for a proposed mouse model of the human disease [7].
  • The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase [8].
  • Many or all of the sites of pseudouridine (Psi) formation in eukaryotic rRNA are selected by site-specific base-pairing with members of the box H + ACA class of small nucleolar RNAs (snoRNAs) [8].
 

Chemical compound and disease context of PSEUDOURIDINE

  • An examination of the base modifications of the primary transcript during treatment of the latter with E. coli S-100 extract showed couplete modification of uridine to pseudouridine and partial methylation of uridine to ribosylthymine in TpsiCG sequence and partial formation of pseudouridine in the anticodon loop [9].
  • The Crystal Structure of E. coli rRNA Pseudouridine Synthase RluE [10].
  • Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work [11].
  • In sharp contradiction to the assumption of universal inhibition of pseudouridine synthases by RNA containing 5-fluorouridine, the Escherichia coli pseudouridine synthase TruB, which has physiologically critical eukaryotic homologs, is not inhibited by such RNA [12].
  • Compared with the tRNALeusI from wild-type strains of E. coli B and K12, both tRNALeuI from nonstarved cells and the unique, rel-tRNALeu are deficient in the modified guanosine which normally occurs adjacent to the anticodon and the pseudouridine in the GTpsiC sequence of the psi loop [13].
 

Biological context of PSEUDOURIDINE

 

Anatomical context of PSEUDOURIDINE

  • U2 small nuclear RNA contains 13 pseudouridine (psi) nucleotides, of which 11 are clustered in 5' regions involved in base-pairing interactions with other RNAs in the spliceosome [18].
  • Our results provide additional evidence that Cbf5p is the Psi synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes [17].
  • The formation of pseudouridine (psi) in U5 RNA during ribonucleoprotein (RNP) assembly was investigated by using HeLa cell extracts [19].
  • To evaluate the relationship between pseudouridine increase in biological fluids and retroviral cell transformation, we have studied the effect of retrovirus infection and/or transformation on the rate of pseudouridine excretion by chick embryo fibroblasts [20].
  • Total RNA was isolated from lymphoblastoid cell lines established from patients, parents, unaffected siblings, and unrelated controls, and the tRNAs were assayed for the presence of pseudouridine (Psi) at the expected positions [21].
 

Associations of PSEUDOURIDINE with other chemical compounds

 

Gene context of PSEUDOURIDINE

  • We show that RNA signals through human TLR3, TLR7, and TLR8, but incorporation of modified nucleosides m5C, m6A, m5U, s2U, or pseudouridine ablates activity [27].
  • Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA [28].
  • Identification of the pseudouridine residues present (or absent) in selected naturally occurring cytoplasmic and mitochondrial tRNAs from DEG1-disrupted strain points out a common origin of psi 38- and psi 39-synthesizing activity in both of these two cellular compartments [29].
  • Among the H/ACA snoRNAs associated with Gar1p, one can distinguish a large group of snoRNAs that are not essential in yeast and serve as guides for pseudouridine synthesis onto the pre-rRNA molecule [30].
  • In addition, two pseudouridine synthases, PUS3 and PUS4, are important for growth in strains carrying a mutation in tRNA(Arg)(CCG) and are essential when La is deleted in these strains [31].
  • Though this reaction is easily reversible, the association of YeiN with pseudouridine kinase indicates that it serves physiologically to metabolize pseudouridine 5'-phosphate rather than to form it [32].
 

Analytical, diagnostic and therapeutic context of PSEUDOURIDINE

References

  1. Urinary excretion of beta-aminoisobutyrate and pseudouridine in acute and chronic myeloid leukemia. Nielsen, H.R., Killmann, S.A. J. Natl. Cancer Inst. (1983) [Pubmed]
  2. The structural basis for tRNA recognition and pseudouridine formation by pseudouridine synthase I. Foster, P.G., Huang, L., Santi, D.V., Stroud, R.M. Nat. Struct. Biol. (2000) [Pubmed]
  3. Serum pseudouridine as a biochemical marker in the development of AKR mouse lymphoma. Russo, T., Colonna, A., Salvatore, F., Cimino, F., Bridges, S., Gurgo, C. Cancer Res. (1984) [Pubmed]
  4. Serum pseudouridine as a biochemical marker in small cell lung cancer. Tamura, S., Fujioka, H., Nakano, T., Hada, T., Higashino, K. Cancer Res. (1987) [Pubmed]
  5. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Ni, J., Tien, A.L., Fournier, M.J. Cell (1997) [Pubmed]
  6. A telomerase component is defective in the human disease dyskeratosis congenita. Mitchell, J.R., Wood, E., Collins, K. Nature (1999) [Pubmed]
  7. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Wong, J.M., Collins, K. Genes Dev. (2006) [Pubmed]
  8. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Lafontaine, D.L., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M., Tollervey, D. Genes Dev. (1998) [Pubmed]
  9. Total synthesis of a tyrosine suppressor transfer RNA gene. XVII. Transcription, in vitro, of the synthetic gene and processing of the primary transcript to transfer RNA. Sekiya, T., Contreras, R., Takeya, T., Khorana, H.G. J. Biol. Chem. (1979) [Pubmed]
  10. The Crystal Structure of E. coli rRNA Pseudouridine Synthase RluE. Pan, H., Ho, J.D., Stroud, R.M., Finer-Moore, J. J. Mol. Biol. (2007) [Pubmed]
  11. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. Del Campo, M., Kaya, Y., Ofengand, J. RNA (2001) [Pubmed]
  12. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine. Spedaliere, C.J., Mueller, E.G. RNA (2004) [Pubmed]
  13. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Kitchingman, G.R., Fournier, M.J. Biochemistry (1977) [Pubmed]
  14. Spb1p-directed formation of Gm2922 in the ribosome catalytic center occurs at a late processing stage. Lapeyre, B., Purushothaman, S.K. Mol. Cell (2004) [Pubmed]
  15. A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. Perron, K., Goldschmidt-Clermont, M., Rochaix, J.D. EMBO J. (1999) [Pubmed]
  16. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A., Fischel-Ghodsian, N. Am. J. Hum. Genet. (2004) [Pubmed]
  17. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Zebarjadian, Y., King, T., Fournier, M.J., Clarke, L., Carbon, J. Mol. Cell. Biol. (1999) [Pubmed]
  18. Pseudouridine formation in U2 small nuclear RNA. Patton, J.R., Jacobson, M.R., Pederson, T. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  19. Pseudouridine modification of U5 RNA in ribonucleoprotein particles assembled in vitro. Patton, J.R. Mol. Cell. Biol. (1991) [Pubmed]
  20. Pseudouridine excretion and transfer RNA primers for reverse transcriptase in tumors of retroviral origin. Esposito, F., Russo, T., Ammendola, R., Duilio, A., Salvatore, F., Cimino, F. Cancer Res. (1985) [Pubmed]
  21. Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. Patton, J.R., Bykhovskaya, Y., Mengesha, E., Bertolotto, C., Fischel-Ghodsian, N. J. Biol. Chem. (2005) [Pubmed]
  22. Effect of tryptophan and nicotinamide loads on urinary excretion of RNA metabolites by bladder cancer patients. Nielsen, H.R., Wolf, H., Brown, R.R. J. Natl. Cancer Inst. (1977) [Pubmed]
  23. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. Felden, B., Hanawa, K., Atkins, J.F., Himeno, H., Muto, A., Gesteland, R.F., McCloskey, J.A., Crain, P.F. EMBO J. (1998) [Pubmed]
  24. Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Mochizuki, Y., He, J., Kulkarni, S., Bessler, M., Mason, P.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  25. Reconstitution of the U1 small nuclear ribonucleoprotein particle. Patton, J.R., Patterson, R.J., Pederson, T. Mol. Cell. Biol. (1987) [Pubmed]
  26. N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota. Armengaud, J., Urbonavicius, J., Fernandez, B., Chaussinand, G., Bujnicki, J.M., Grosjean, H. J. Biol. Chem. (2004) [Pubmed]
  27. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Karikó, K., Buckstein, M., Ni, H., Weissman, D. Immunity (2005) [Pubmed]
  28. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Massenet, S., Motorin, Y., Lafontaine, D.L., Hurt, E.C., Grosjean, H., Branlant, C. Mol. Cell. Biol. (1999) [Pubmed]
  29. Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3) catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. Lecointe, F., Simos, G., Sauer, A., Hurt, E.C., Motorin, Y., Grosjean, H. J. Biol. Chem. (1998) [Pubmed]
  30. Gar1p binds to the small nucleolar RNAs snR10 and snR30 in vitro through a nontypical RNA binding element. Bagni, C., Lapeyre, B. J. Biol. Chem. (1998) [Pubmed]
  31. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. Copela, L.A., Chakshusmathi, G., Sherrer, R.L., Wolin, S.L. RNA (2006) [Pubmed]
  32. Molecular identification of pseudouridine-metabolizing enzymes. Preumont, A., Snoussi, K., Stroobant, V., Collet, J.F., Van Schaftingen, E. J. Biol. Chem. (2008) [Pubmed]
  33. Serum levels of N2, N2-dimethylguanosine and pseudouridine as determined by radioimmunoassay for patients with malignancy. Levine, L., Waalkes, T.P., Stolbach, L. J. Natl. Cancer Inst. (1975) [Pubmed]
  34. The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain. Hallberg, B.M., Ericsson, U.B., Johnson, K.A., Andersen, N.M., Douthwaite, S., Nordlund, P., Beuscher, A.E., Erlandsen, H. J. Mol. Biol. (2006) [Pubmed]
 
WikiGenes - Universities