The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

acridone     10H-acridin-9-one

Synonyms: Acridanone, Acridin-9-one, zlchem 755, SureCN19289, ARONIS001302, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NSC7664

  • Thus, the acridone scaffold, when appropriately functionalized, can yield compounds with selective activity against pestiviruses and related viruses such as the HCV [1].
  • Acridone synthase II cDNA was cloned from irradiated cell suspension cultures of Ruta graveolens L. and expressed in Escherichia coli [2].
  • Studies on the inhibitory effects of some acridone alkaloids on Epstein-Barr virus activation [3].
  • These results suggest that the acridone derivatives suppress HIV-1 replication at the transcriptional level primarily through a mechanism of PKC inhibition [4].
  • The acridone derivatives were also tested against human cytomegalovirus (HCMV) replication but none of them were active [5].

High impact information on NSC7664


Biological context of NSC7664


Anatomical context of NSC7664

  • The uptake of a substituted acridone by rat mast cells in relationship to histamine release: a possible indicator of exocytosis-induced expansion of the plasma membrane [14].
  • These data indicate that acridone formation previously observed in isolated rat hepatocytes and in vivo is most likely due to aldehyde oxidase rather than cytochrome P450 [15].
  • (Rutaceae) and of two further acridone alkaloids (arborinine and evoxanthine) were investigated by means of the MTT assay, using the human cell lines HeLa, MCF7 and A431 [16].
  • Biliary excretion of AC metabolites (examined after removal of the gallbladder at the appropriate times) is greatest at 1-2 hr after treatment when at least 14 products are detected, including AC, AC-N-oxide, and other products with UV/visible spectra characteristic of ring hydroxylated and/or acridone derivatives [17].
  • Further experiments documented the capacity for augmentation of airspace NK cell activity by intratracheal instillation of interferon inducers poly I:C and carboxymethyl acridanone [18].

Associations of NSC7664 with other chemical compounds


Gene context of NSC7664

  • Two acridone synthase cDNAs (ACS1 and ACS2) have been cloned from Ruta cell cultures, and we report now the cloning of three chalcone synthase cDNAs (CHS1 to CHS3) from immature Ruta flowers [21].
  • The metabolism of DACA to acridone metabolites by aldehyde oxidase (AO) (EC appears to play a major role in its elimination in human patients and rodents [22].
  • Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918 [23].
  • Acridone synthase (ACS) and chalcone synthase (CHS) catalyse the pivotal reactions in the formation of acridone alkaloids or flavonoids [20].
  • The molecular mass of acridone synthase II was estimated from size exclusion chromatography on a Fractogel EMD BioSEC (S) column at about 45 kDa, as compared to a mass of 44 +/- 3 kDa found for the acridone synthase I on Superdex 75 [2].

Analytical, diagnostic and therapeutic context of NSC7664


  1. Synthesis and anti-BVDV activity of acridones as new potential antiviral agents. Tabarrini, O., Manfroni, G., Fravolini, A., Cecchetti, V., Sabatini, S., De Clercq, E., Rozenski, J., Canard, B., Dutartre, H., Paeshuyse, J., Neyts, J. J. Med. Chem. (2006) [Pubmed]
  2. Native acridone synthases I and II from Ruta graveolens L. form homodimers. Lukacin, R., Springob, K., Urbanke, C., Ernwein, C., Schröder, G., Schröder, J., Matern, U. FEBS Lett. (1999) [Pubmed]
  3. Studies on the inhibitory effects of some acridone alkaloids on Epstein-Barr virus activation. Takemura, Y., Ju-ichi, M., Ito, C., Furukawa, H., Tokuda, H. Planta Med. (1995) [Pubmed]
  4. Acridone derivatives are selective inhibitors of HIV-1 replication in chronically infected cells. Fujiwara, M., Okamoto, M., Okamoto, M., Watanabe, M., Machida, H., Shigeta, S., Konno, K., Yokota, T., Baba, M. Antiviral Res. (1999) [Pubmed]
  5. 1,3-Dihydroxyacridone derivatives as inhibitors of herpes virus replication. Akanitapichat, P., Lowden, C.T., Bastow, K.F. Antiviral Res. (2000) [Pubmed]
  6. ER-27319, an acridone-related compound, inhibits release of antigen-induced allergic mediators from mast cells by selective inhibition of fcepsilon receptor I-mediated activation of Syk. Moriya, K., Rivera, J., Odom, S., Sakuma, Y., Muramato, K., Yoshiuchi, T., Miyamoto, M., Yamada, K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  7. A general assay for antibody catalysis using acridone as a fluorescent tag. Reymond, J.L., Koch, T., Schröer, J., Tierney, E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Characterization of a novel bisacridone and comparison with PSC 833 as a potent and poorly reversible modulator of P-glycoprotein. Horton, J.K., Thimmaiah, K.N., Altenberg, G.A., Castro, A.F., Germain, G.S., Gowda, G.K., Houghton, P.J. Mol. Pharmacol. (1997) [Pubmed]
  9. Synthesis and antitumor activity of conjugates of muramyldipeptide, normuramyldipeptide, and desmuramylpeptides with acridine/acridone derivatives. Dzierzbicka, K., Kołodziejczyk, A.M., Wysocka-Skrzela, B., Myśliwski, A., Sosnowska, D. J. Med. Chem. (2001) [Pubmed]
  10. Synthesis of the acridone alkaloids glyfoline and congeners. Structure-activity relationship studies of cytotoxic acridones. Su, T.L., Köhler, B., Chou, T.C., Chun, M.W., Watanabe, K.A. J. Med. Chem. (1992) [Pubmed]
  11. Metabolism of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in cancer patients undergoing a phase I clinical trial. Schofield, P.C., Robertson, I.G., Paxton, J.W., McCrystal, M.R., Evans, B.D., Kestell, P., Baguley, B.C. Cancer Chemother. Pharmacol. (1999) [Pubmed]
  12. New acridone inhibitors of human herpes virus replication. Bastow, K.F. Current drug targets. Infectious disorders. (2004) [Pubmed]
  13. An acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata. Wanibuchi, K., Zhang, P., Abe, T., Morita, H., Kohno, T., Chen, G., Noguchi, H., Abe, I. FEBS J. (2007) [Pubmed]
  14. The uptake of a substituted acridone by rat mast cells in relationship to histamine release: a possible indicator of exocytosis-induced expansion of the plasma membrane. Kinsolving, C.R., Johnson, A.R., Moran, N.C. J. Pharmacol. Exp. Ther. (1975) [Pubmed]
  15. Inhibition by SKF-525A of the aldehyde oxidase-mediated metabolism of the experimental antitumour agent acridine carboxamide. Robertson, I.G., Bland, T.J. Biochem. Pharmacol. (1993) [Pubmed]
  16. Investigation of Cytotoxic Activity on Human Cancer Cell Lines of Arborinine and Furanoacridones Isolated from Ruta graveolens. Réthy, B., Zupkó, I., Minorics, R., Hohmann, J., Ocsovszki, I., Falkay, G. Planta Med. (2007) [Pubmed]
  17. Metabolism of the experimental antitumor agent acridine carboxamide in the mouse. Robertson, I.G., Palmer, B.D., Paxton, J.W., Bland, T.J. Drug Metab. Dispos. (1993) [Pubmed]
  18. Compartmental analysis of resting and activated pulmonary natural killer cells. Prichard, M.G., Boerth, L.W., Pennington, J.E. Exp. Lung Res. (1987) [Pubmed]
  19. Chemiluminescence in autoxidation of phosphonate carbanions. Phospha-1,2-dioxetanes as the most likely high-energy intermediates. Motoyoshiya, J., Ikeda, T., Tsuboi, S., Kusaura, T., Takeuchi, Y., Hayashi, S., Yoshioka, S., Takaguchi, Y., Aoyama, H. J. Org. Chem. (2003) [Pubmed]
  20. Transformation of acridone synthase to chalcone synthase. Lukacin, R., Schreiner, S., Matern, U. FEBS Lett. (2001) [Pubmed]
  21. Specificities of functionally expressed chalcone and acridone synthases from Ruta graveolens. Springob, K., Lukacin, R., Ernwein, C., Gröning, I., Matern, U. Eur. J. Biochem. (2000) [Pubmed]
  22. Inter-species variation in the metabolism and inhibition of N-[(2'-dimethylamino)ethyl]acridine-4-carboxamide (DACA) by aldehyde oxidase. Schofield, P.C., Robertson, I.G., Paxton, J.W. Biochem. Pharmacol. (2000) [Pubmed]
  23. Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918. Wallstab, A., Koester, M., Böhme, M., Keppler, D. Br. J. Cancer (1999) [Pubmed]
  24. Molecular cloning and heterologous expression of acridone synthase from elicited Ruta graveolens L. cell suspension cultures. Junghanns, K.T., Kneusel, R.E., Baumert, A., Maier, W., Gröger, D., Matern, U. Plant Mol. Biol. (1995) [Pubmed]
  25. Chemico-enzymatic synthesis of a new fluorescent-labeled DNA by PCR with a thymidine nucleotide analogue bearing an acridone derivative. Shoji, A., Hasegawa, T., Kuwahara, M., Ozaki, H., Sawai, H. Bioorg. Med. Chem. Lett. (2007) [Pubmed]
  26. MDR1 modulators improve the chemotherapy response of human hepatoblastoma to doxorubicin in vitro. Warmann, S., Göhring, G., Teichmann, B., Geerlings, H., Fuchs, J. J. Pediatr. Surg. (2002) [Pubmed]
WikiGenes - Universities