The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

BONGKREKIC ACID     (2E,4Z,8Z,10E,14E,18E,20Z)- 20...

Synonyms: AC1NTHEW, NSC-112904, NSC112904, 60132-21-0, Bonqkrekic acid
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of BONGKREKIC ACID


High impact information on BONGKREKIC ACID


Chemical compound and disease context of BONGKREKIC ACID


Biological context of BONGKREKIC ACID


Anatomical context of BONGKREKIC ACID


Associations of BONGKREKIC ACID with other chemical compounds


Gene context of BONGKREKIC ACID


Analytical, diagnostic and therapeutic context of BONGKREKIC ACID

  • 5. (i) Microinjection of atractyloside or bongkrekic acid caused a substantial fall in the resting Na efflux [32].
  • Employing the double silicone oil layer filtering centrifugation method, we examined the kinetic properties of the uptake of various adenylates as well as the inhibitory effects exerted by carboxyatractyloside, atractyloside and bongkrekic acid, known specific inhibitors of the mitochondrial adenylate translocator [33].
  • The dRCM with added lipid was inoculated with B. cocovenenans, incubated at 30 degrees C for 5 days and the amount of bongkrekic acid formed quantified by HPLC [34].
  • 3H- or 35S-labeled atractyloside and carboxyatractyloside, atractyloside derivatives used for affinity chromatography, photoaffinity labeling, and spin labeling, and 3H- or 14C-labeled bongkrekic acid [35].


  1. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Vieira, H.L., Boya, P., Cohen, I., El Hamel, C., Haouzi, D., Druillenec, S., Belzacq, A.S., Brenner, C., Roques, B., Kroemer, G. Oncogene (2002) [Pubmed]
  2. Isobongkrekic acid, a new inhibitor of mitochondrial ADP-ATP transport: radioactive labeling and chemical and biological properties. Lauquin, G.J., Duplaa, A.M., Klein, G., Rousseau, A., Vignais, P.V. Biochemistry (1976) [Pubmed]
  3. Inhibition of electrical activity in mouse pancreatic beta-cells by the ATP/ADP translocase inhibitor, bongkrekic acid. Kiranadi, B., Bangham, J.A., Smith, P.A. FEBS Lett. (1991) [Pubmed]
  4. Betanodavirus induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid. Chen, S.P., Yang, H.L., Her, G.M., Lin, H.Y., Jeng, M.F., Wu, J.L., Hong, J.R. Virology (2006) [Pubmed]
  5. Bongkrekic acid ameliorates ischemic neuronal death in the cortex by preventing cytochrome c release and inhibiting astrocyte activation. Muranyi, M., Li, P.A. Neurosci. Lett. (2005) [Pubmed]
  6. Mitochondrial permeability transition is a central coordinating event of apoptosis. Marchetti, P., Castedo, M., Susin, S.A., Zamzami, N., Hirsch, T., Macho, A., Haeffner, A., Hirsch, F., Geuskens, M., Kroemer, G. J. Exp. Med. (1996) [Pubmed]
  7. Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Budd, S.L., Tenneti, L., Lishnak, T., Lipton, S.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  8. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Beltrán, B., Mathur, A., Duchen, M.R., Erusalimsky, J.D., Moncada, S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  9. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R.J., Matsuda, H., Tsujimoto, Y. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  10. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., Greenberg, A.H. Mol. Cell. Biol. (2000) [Pubmed]
  11. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Murata, M., Akao, M., O'Rourke, B., Marbán, E. Circ. Res. (2001) [Pubmed]
  12. Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Ushmorov, A., Ratter, F., Lehmann, V., Dröge, W., Schirrmacher, V., Umansky, V. Blood (1999) [Pubmed]
  13. Mitochondrial permeability transition triggers lymphocyte apoptosis. Marchetti, P., Hirsch, T., Zamzami, N., Castedo, M., Decaudin, D., Susin, S.A., Masse, B., Kroemer, G. J. Immunol. (1996) [Pubmed]
  14. Potassium leakage during the apoptotic degradation phase. Dallaporta, B., Hirsch, T., Susin, S.A., Zamzami, N., Larochette, N., Brenner, C., Marzo, I., Kroemer, G. J. Immunol. (1998) [Pubmed]
  15. Alternative programs of cell death in developing retinal tissue. Guimarães, C.A., Benchimol, M., Amarante-Mendes, G.P., Linden, R. J. Biol. Chem. (2003) [Pubmed]
  16. Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells. Buchet, K., Godinot, C. J. Biol. Chem. (1998) [Pubmed]
  17. Tumor-induced apoptosis of T cells: amplification by a mitochondrial cascade. Gastman, B.R., Yin, X.M., Johnson, D.E., Wieckowski, E., Wang, G.Q., Watkins, S.C., Rabinowich, H. Cancer Res. (2000) [Pubmed]
  18. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Fulda, S., Susin, S.A., Kroemer, G., Debatin, K.M. Cancer Res. (1998) [Pubmed]
  19. Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine. Tafani, M., Minchenko, D.A., Serroni, A., Farber, J.L. Cancer Res. (2001) [Pubmed]
  20. Cyclic AMP-induced Mg2+ release from rat liver hepatocytes, permeabilized hepatocytes, and isolated mitochondria. Romani, A., Dowell, E., Scarpa, A. J. Biol. Chem. (1991) [Pubmed]
  21. Reversible inhibition of adenine nucleotide translocation by long chain acyl-CoA esters in bovine heart mitochondria and inverted submitochondrial particles. Comparison with atractylate and bongkrekic acid. Chua, B.H., Shrago, E. J. Biol. Chem. (1977) [Pubmed]
  22. PS-341 (Bortezomib) Induces Lysosomal Cathepsin B Release and a Caspase-2-dependent Mitochondrial Permeabilization and Apoptosis in Human Pancreatic Cancer Cells. Yeung, B.H., Huang, D.C., Sinicrope, F.A. J. Biol. Chem. (2006) [Pubmed]
  23. Mechanisms involved in spontaneous and Viscum album agglutinin-I-induced human neutrophil apoptosis: Viscum album agglutinin-I accelerates the loss of antiapoptotic Mcl-1 expression and the degradation of cytoskeletal paxillin and vimentin proteins via caspases. Lavastre, V., Pelletier, M., Saller, R., Hostanska, K., Girard, D. J. Immunol. (2002) [Pubmed]
  24. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Maxwell, D.P., Nickels, R., McIntosh, L. Plant J. (2002) [Pubmed]
  25. Tributyltin interacts with mitochondria and induces cytochrome c release. Nishikimi, A., Kira, Y., Kasahara, E., Sato, E.F., Kanno, T., Utsumi, K., Inoue, M. Biochem. J. (2001) [Pubmed]
  26. Carbenoxolone induces oxidative stress in liver mitochondria, which is responsible for transition pore opening. Salvi, M., Fiore, C., Battaglia, V., Palermo, M., Armanini, D., Toninello, A. Endocrinology (2005) [Pubmed]
  27. Involvement of caspases and of mitochondria in Fas ligation-induced eosinophil apoptosis: modulation by interleukin-5 and interferon-gamma. Létuvé, S., Druilhe, A., Grandsaigne, M., Aubier, M., Pretolani, M. J. Leukoc. Biol. (2001) [Pubmed]
  28. Differential involvement of p38 MAP kinase pathway and Bax translocation in the mitochondria-mediated cell death in TCR- and dexamethasone-stimulated thymocytes. Yoshino, T., Kishi, H., Nagata, T., Tsukada, K., Saito, S., Muraguchi, A. Eur. J. Immunol. (2001) [Pubmed]
  29. Tumor necrosis factor-alpha-induced cell killing and activation of transcription factor NF-kappaB are uncoupled in L929 cells. Hehner, S.P., Hofmann, T.G., Ratter, F., Dumont, A., Dröge, W., Schmitz, M.L. J. Biol. Chem. (1998) [Pubmed]
  30. Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells. Zamora, M., Granell, M., Mampel, T., Viñas, O. FEBS Lett. (2004) [Pubmed]
  31. Insulin-like growth factor-I regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Leinninger, G.M., Russell, J.W., van Golen, C.M., Berent, A., Feldman, E.L. Cell Death Differ. (2004) [Pubmed]
  32. Mode of stimulation by aldosterone of the sodium efflux in barnacle muscle fibres: effects of ouabain, ethacrynic acid, diphenylhydantoin, (ATPMg)(2-), adenine translocase inhibitors, pyruvate and oxythiamine. Bittar, E.E., Tallitsch, R.B. J. Physiol. (Lond.) (1976) [Pubmed]
  33. Comparative analysis of mitochondrial and amyloplast adenylate translocators. Pozueta-Romero, J., Viale, A.M., Akazawa, T. FEBS Lett. (1991) [Pubmed]
  34. The effect of lipids on bongkrekic (Bongkrek) acid toxin production by Burkholderia cocovenenans in coconut media. Garcia, R.A., Hotchkiss, J.H., Steinkraus, K.H. Food additives and contaminants. (1999) [Pubmed]
  35. 3H- or 35S-labeled atractyloside and carboxyatractyloside, atractyloside derivatives used for affinity chromatography, photoaffinity labeling, and spin labeling, and 3H- or 14C-labeled bongkrekic acid. Vignais, P.M., Brandolin, G., Lauquin, G.J., Chabert, J. Meth. Enzymol. (1979) [Pubmed]
WikiGenes - Universities