The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

catecholate     benzene-1,2-diolate

Synonyms: CHEBI:32402, AC1NUU17
This record was replaced with 289.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CATECHIN

 

High impact information on CATECHIN

 

Chemical compound and disease context of CATECHIN

 

Biological context of CATECHIN

  • The chromosomal iroBCDEN gene cluster first described for Salmonella enterica is involved in the uptake of catecholate-type siderophore compounds [15].
  • Iha thus represents a Fur-regulated catecholate siderophore receptor that, uniquely, exhibits an adherence-enhancing phenotype and is the first described urovirulence factor identified in a CGA strain [16].
  • Periplasmic fluid from cells overexpressing the binding protein adsorbed catecholate ferric siderophores with high affinity: in a gel filtration chromatography assay the K(d) of the ferric enterobactin-FepB binding reaction was approximately 135 nM [17].
  • The molecular structure of the ligand is not much modified by the coordination of lead at the level of the catecholate [18].
  • Catecholate receptor proteins in Salmonellaenterica: role in virulence and implications for vaccine development [19].
 

Anatomical context of CATECHIN

 

Associations of CATECHIN with other chemical compounds

 

Gene context of CATECHIN

  • Characterization of the catecholate indicator strain S. typhimurium TA2700 as an ent fhuC double mutant [27].
  • As a functional model of the catechol dioxygenases, [(TPA)Fe(Cat)]BPh(4) (TPA = tris(2-pyridylmethyl)amine and Cat = catecholate dianion) exhibits the purple-blue coloration indicative of some charge transfer within the ground state [28].
  • Resonance Raman studies of catecholate and phenolate complexes of recombinant human tyrosine hydroxylase [29].
  • The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN [30].
  • In this study the first gene required for catecholate siderophore biosynthesis, which encodes an isochorismate synthase (csbC), was isolated [31].
 

Analytical, diagnostic and therapeutic context of CATECHIN

References

  1. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Hantke, K., Nicholson, G., Rabsch, W., Winkelmann, G. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Theoretical insights in enzyme catalysis. Martí, S., Roca, M., Andrés, J., Moliner, V., Silla, E., Tuñón, I., Bertrán, J. Chemical Society reviews. (2004) [Pubmed]
  3. Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA. Cao, Z., Qi, Z., Sprencel, C., Newton, S.M., Klebba, P.E. Mol. Microbiol. (2000) [Pubmed]
  4. FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. Ankenbauer, R.G., Quan, H.N. J. Bacteriol. (1994) [Pubmed]
  5. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. Liles, M.R., Scheel, T.A., Cianciotto, N.P. J. Bacteriol. (2000) [Pubmed]
  6. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Goetz, D.H., Holmes, M.A., Borregaard, N., Bluhm, M.E., Raymond, K.N., Strong, R.K. Mol. Cell (2002) [Pubmed]
  7. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. Yun, C.W., Bauler, M., Moore, R.E., Klebba, P.E., Philpott, C.C. J. Biol. Chem. (2001) [Pubmed]
  8. Resonance Raman studies on the blue-green-colored bovine adrenal tyrosine 3-monooxygenase (tyrosine hydroxylase). Evidence that the feedback inhibitors adrenaline and noradrenaline are coordinated to iron. Andersson, K.K., Cox, D.D., Que, L., Flatmark, T., Haavik, J. J. Biol. Chem. (1988) [Pubmed]
  9. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin. Abergel, R.J., Warner, J.A., Shuh, D.K., Raymond, K.N. J. Am. Chem. Soc. (2006) [Pubmed]
  10. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase. Roca, M., Martí, S., Andrés, J., Moliner, V., Tuñón, I., Bertrán, J., Williams, I.H. J. Am. Chem. Soc. (2003) [Pubmed]
  11. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Burton, C.L., Chhabra, S.R., Swift, S., Baldwin, T.J., Withers, H., Hill, S.J., Williams, P. Infect. Immun. (2002) [Pubmed]
  12. Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Yamamoto, S., Okujo, N., Sakakibara, Y. Arch. Microbiol. (1994) [Pubmed]
  13. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Wilson, M.K., Abergel, R.J., Raymond, K.N., Arceneaux, J.E., Byers, B.R. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  14. Chelating agents for uranium(VI): 2. Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice. Durbin, P.W., Kullgren, B., Ebbe, S.N., Xu, J., Raymond, K.N. Health physics. (2000) [Pubmed]
  15. Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Sorsa, L.J., Dufke, S., Heesemann, J., Schubert, S. Infect. Immun. (2003) [Pubmed]
  16. Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Léveillé, S., Caza, M., Johnson, J.R., Clabots, C., Sabri, M., Dozois, C.M. Infect. Immun. (2006) [Pubmed]
  17. Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. Sprencel, C., Cao, Z., Qi, Z., Scott, D.C., Montague, M.A., Ivanoff, N., Xu, J., Raymond, K.M., Newton, S.M., Klebba, P.E. J. Bacteriol. (2000) [Pubmed]
  18. Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)-quercetin complex. Cornard, J.P., Dangleterre, L., Lapouge, C. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. (2005) [Pubmed]
  19. Catecholate receptor proteins in Salmonellaenterica: role in virulence and implications for vaccine development. Williams, P.H., Rabsch, W., Methner, U., Voigt, W., Tschäpe, H., Reissbrodt, R. Vaccine (2006) [Pubmed]
  20. Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Strahsburger, E., Baeza, M., Monasterio, O., Lagos, R. Antimicrob. Agents Chemother. (2005) [Pubmed]
  21. Immunosuppression of the host and delivery of iron to the pathogen: a possible dual role of siderophores in the pathogenesis of microbial infections? Autenrieth, I., Hantke, K., Heesemann, J. Med. Microbiol. Immunol. (Berl.) (1991) [Pubmed]
  22. A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution. Lana-Villarreal, T., Rodes, A., Pérez, J.M., Gómez, R. J. Am. Chem. Soc. (2005) [Pubmed]
  23. In vitro potentiation of antibiotic activities by a catecholate iron chelator against chloroquine-resistant Plasmodium falciparum. Pradines, B., Ramiandrasoa, F., Rolain, J.M., Rogier, C., Mosnier, J., Daries, W., Fusai, T., Kunesch, G., Le Bras, J., Parzy, D. Antimicrob. Agents Chemother. (2002) [Pubmed]
  24. Interactions between the argininyl moieties of neurotensin and the catechol protons of dopamine. Schenk, J.O., Morocco, M.T., Ziemba, V.A. J. Neurochem. (1991) [Pubmed]
  25. In vitro activity of iron-binding compounds against Senegalese isolates of Plasmodium falciparum. Pradines, B., Tall, A., Ramiandrasoa, F., Spiegel, A., Sokhna, C., Fusai, T., Mosnier, J., Daries, W., Trape, J.F., Kunesch, G., Parzy, D., Rogier, C. J. Antimicrob. Chemother. (2006) [Pubmed]
  26. EPR investigation and spectral simulations of iron-catecholate complexes and iron-peptide models of marine adhesive cross-links. Weisser, J.T., Nilges, M.J., Sever, M.J., Wilker, J.J. Inorganic chemistry. (2006) [Pubmed]
  27. Characterization of the catecholate indicator strain S. typhimurium TA2700 as an ent fhuC double mutant. Rabsch, W. FEMS Microbiol. Lett. (1998) [Pubmed]
  28. Electronic, vibrational, and structural properties of a spin-crossover catecholato-iron system in the solid state: theoretical study of the electronic nature of the doublet and sextet states. Simaan, A.J., Boillot, M.L., Carrasco, R., Cano, J., Girerd, J.J., Mattioli, T.A., Ensling, J., Spiering, H., Gütlich, P. Chemistry (Weinheim an der Bergstrasse, Germany) (2005) [Pubmed]
  29. Resonance Raman studies of catecholate and phenolate complexes of recombinant human tyrosine hydroxylase. Michaud-Soret, I., Andersson, K.K., Que, L., Haavik, J. Biochemistry (1995) [Pubmed]
  30. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Patzer, S.I., Baquero, M.R., Bravo, D., Moreno, F., Hantke, K. Microbiology (Reading, Engl.) (2003) [Pubmed]
  31. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Tindale, A.E., Mehrotra, M., Ottem, D., Page, W.J. Microbiology (Reading, Engl.) (2000) [Pubmed]
  32. Chemical nature, ligand denticity and quantification of fungal siderophores. Baakza, A., Dave, B.P., Dube, H.C. Indian J. Exp. Biol. (2004) [Pubmed]
 
WikiGenes - Universities