The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1L1L22     (1S)-3-[2-[(1R,3aR,7aS)-1- [(2S,5R)-5,6...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ergocalciferol


Psychiatry related information on ergocalciferol


High impact information on ergocalciferol

  • Radiologic studies and bone histomorphometric analyses showed that phosphate (alone or with ergocalciferol) induced the mineralization of the growth plate but not of the endosteal bone surface [1].
  • 3. In three volunteers who each ingested 1.25 mg of vitamin D2, the total plasma D2 increased to 90 +/- 32 ng/ml by 4 h, and the D2 was evenly distributed between the upper and lower layers at 4, 8, and 24 h after the dose, indicating a continuing association of the vitamin with chylomicrons and lipoproteins, as well as with hDBP [7].
  • Administration of NO-1886 for as long as 90 d significantly decreased the degree of atherosclerotic changes in the coronary arteries of vitamin D2-treated, cholesterol-fed rats [8].
  • Calcification was induced by dietary supplements of cholesterol, vitamin D2, and calcium [9].
  • We evaluated baseline vitamin D (vitamin D2 and D3), 25-OH vitamin D2 and D3, 1,25(OH)2 vitamin D, vitamin D-binding protein, bone mineral content and dietary mineral content in six children (mean age: 12.1 years) with cholestasis since infancy [10].

Chemical compound and disease context of ergocalciferol


Biological context of ergocalciferol


Anatomical context of ergocalciferol

  • When calcium uptake was measured at the mucosal or brush border surface it was found to be a cation-oriented, saturable process in both the +D3 and minus D3 systems and was enhanced by calciferol supplementation [19].
  • The sum of this and other evidence suggests that of uptake of calcium is a calciferol-mediated event which is not the rate-limiting step in the total transport of this ion across the intestinal epithelial cell [19].
  • CONCLUSION: CYP3A4 is a vitamin D 25-hydroxylase for vitamin D2 in human hepatic microsomes and hydroxylates both 1alpha(OH)D2 and 1alpha(OH)D3 [20].
  • Vitamin D3 was the most abundant vitamin D compound in human milk, followed by vitamin D2, 25OHD3, and, finally, 25OHD2 [21].
  • The effect on cortical bone loss of treating elderly women with 15,000 IU vitamin D2 weekly was evaluated by sequential radiographic morphometry of the metacarpals [22].

Associations of ergocalciferol with other chemical compounds


Gene context of ergocalciferol


Analytical, diagnostic and therapeutic context of ergocalciferol


  1. Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. Glorieux, F.H., Marie, P.J., Pettifor, J.M., Delvin, E.E. N. Engl. J. Med. (1980) [Pubmed]
  2. Increased growth after long-term oral 1alpha,25-vitamin D3 in childhood renal osteodystrophy. Chesney, R.W., Moorthy, A.V., Eisman, J.A., Jax, D.K., Mazess, R.B., DeLuca, H.F. N. Engl. J. Med. (1978) [Pubmed]
  3. End-organ resistance to 1,25-dihydroxycholecalciferol. Liberman, U.A., Samuel, R., Halabe, A., Kauli, R., Edelstein, S., Weisman, Y., Papapoulos, S.E., Clemens, T.L., Fraher, L.J., O'Riordan, J.L. Lancet (1980) [Pubmed]
  4. Effective 25-hydroxylation of vitamin D2 in alcoholic cirrhosis. Posner, D.B., Russell, R.M., Absood, S., Connor, T.B., Davis, C., Martin, L., Williams, J.B., Norris, A.H., Merchant, C. Gastroenterology (1978) [Pubmed]
  5. Metabolic bone disease in alcoholic cirrhosis: a comparison of the effect of vitamin D2, 25-hydroxyvitamin D, or supportive treatment. Mobarhan, S.A., Russell, R.M., Recker, R.R., Posner, D.B., Iber, F.L., Miller, P. Hepatology (1984) [Pubmed]
  6. Menatetrenone and vitamin D2 with calcium supplements prevent nonvertebral fracture in elderly women with Alzheimer's disease. Sato, Y., Kanoko, T., Satoh, K., Iwamoto, J. Bone (2005) [Pubmed]
  7. Human plasma transport of vitamin D after its endogenous synthesis. Haddad, J.G., Matsuoka, L.Y., Hollis, B.W., Hu, Y.Z., Wortsman, J. J. Clin. Invest. (1993) [Pubmed]
  8. The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. Tsutsumi, K., Inoue, Y., Shima, A., Iwasaki, K., Kawamura, M., Murase, T. J. Clin. Invest. (1993) [Pubmed]
  9. Effect of calcification on in vivo mechanical response of rabbit arteries to balloon dilation. Demer, L.L. Circulation (1991) [Pubmed]
  10. Bone disease in chronic childhood cholestasis. I. Vitamin D absorption and metabolism. Heubi, J.E., Hollis, B.W., Specker, B., Tsang, R.C. Hepatology (1989) [Pubmed]
  11. 24-Hydroxylation of 1,25-dihydroxyergocalciferol. An unambiguous deactivation process. Horst, R.L., Reinhardt, T.A., Ramberg, C.F., Koszewski, N.J., Napoli, J.L. J. Biol. Chem. (1986) [Pubmed]
  12. The effects of calciferol and its metabolites on patients with chronic renal failure. I. Calciferol, dihydrotachysterol, and calcifediol. Voigts, A.L., Felsenfeld, A.J., Llach, F. Arch. Intern. Med. (1983) [Pubmed]
  13. A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. Marx, S.J., Spiegel, A.M., Brown, E.M., Gardner, D.G., Downs, R.W., Attie, M., Hamstra, A.J., DeLuca, H.F. J. Clin. Endocrinol. Metab. (1978) [Pubmed]
  14. Effects of 25-hydroxycholecalciferol on bone lesions of children with terminal renal failure. Witmer, G., Margolis, A., Fontaine, O., Fritsch, J., Lenoir, G., Broyer, M., Balsan, S. Kidney Int. (1976) [Pubmed]
  15. Studies on the mode of action of calciferol. Effects of dietary calcium and phosphorus on the relationship between the 25-hydroxyvitamin D3-1alpha-hydroxylase and production of chick intestinal calcium binding protein. Friedlander, E.J., Henry, H.L., Norman, A.W. J. Biol. Chem. (1977) [Pubmed]
  16. An in vitro study of vitamin D2 hydroxylases in the chick. Jones, G., Schnoes, H.K., DeLuca, H.F. J. Biol. Chem. (1976) [Pubmed]
  17. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. Cheng, J.B., Motola, D.L., Mangelsdorf, D.J., Russell, D.W. J. Biol. Chem. (2003) [Pubmed]
  18. Bioavailability of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured with a human bioassay. Outila, T.A., Mattila, P.H., Piironen, V.I., Lamberg-Allardt, C.J. Am. J. Clin. Nutr. (1999) [Pubmed]
  19. Studies on the mechanism of action of calciferol. VIII. The effects of dietary vitamin D and the polyene antibiotic, filipin, in vitro, on the intestinal cellular uptake of calcium. Wong, R.G., Norman, A.W. J. Biol. Chem. (1975) [Pubmed]
  20. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. Gupta, R.P., Hollis, B.W., Patel, S.B., Patrick, K.S., Bell, N.H. J. Bone Miner. Res. (2004) [Pubmed]
  21. Relationships among vitamin D, 25-hydroxyvitamin D, and vitamin D-binding protein concentrations in the plasma and milk of human subjects. Hollis, B.W., Pittard, W.B., Reinhardt, T.A. J. Clin. Endocrinol. Metab. (1986) [Pubmed]
  22. A prospective trial of the effect of vitamin D supplementation on metacarpal bone loss in elderly women. Nordin, B.E., Baker, M.R., Horsman, A., Peacock, M. Am. J. Clin. Nutr. (1985) [Pubmed]
  23. Experience with 1,25-dihydroxycholecalciferol therapy in undergoing hemodialysis patients with progressive vitamin D2-treated osteodystrophy. Prior, J.C., Cameron, E.C., Ballon, H.S., Lirenman, D.S., Moriarty, M.V., Price, J.D. Am. J. Med. (1979) [Pubmed]
  24. Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. Sambrook, P.N., Kotowicz, M., Nash, P., Styles, C.B., Naganathan, V., Henderson-Briffa, K.N., Eisman, J.A., Nicholson, G.C. J. Bone Miner. Res. (2003) [Pubmed]
  25. 25-Hydroxyvitamin D and 1,25-dihydroxyvitamin D of D2 and D3 origin in maternal and umbilical cord serum after vitamin D2 supplementation in human pregnancy. Markestad, T., Aksnes, L., Ulstein, M., Aarskog, D. Am. J. Clin. Nutr. (1984) [Pubmed]
  26. Resolution of vitamin D insufficiency in osteopenic patients results in rapid recovery of bone mineral density. Adams, J.S., Kantorovich, V., Wu, C., Javanbakht, M., Hollis, B.W. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  27. Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3. Thummel, K.E., Brimer, C., Yasuda, K., Thottassery, J., Senn, T., Lin, Y., Ishizuka, H., Kharasch, E., Schuetz, J., Schuetz, E. Mol. Pharmacol. (2001) [Pubmed]
  28. Calcitonin gene-related peptide in thyroid nerve fibers and C cells: effects on thyroid hormone secretion and response to hypercalcemia. Grunditz, T., Ekman, R., Håkanson, R., Rerup, C., Sundler, F., Uddman, R. Endocrinology (1986) [Pubmed]
  29. Tumor necrosis factor induction by an aqueous phenol-extracted lipopolysaccharide complex from Bacteroides species. Delahooke, D.M., Barclay, G.R., Poxton, I.R. Infect. Immun. (1995) [Pubmed]
  30. Immunohistochemical detection of activin A in osteoclasts. Hosoi, T., Inoue, S., Hoshino, S., Ouchi, Y., Orimo, H. Gerontology. (1996) [Pubmed]
  31. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Sawada, N., Sakaki, T., Yoneda, S., Kusudo, T., Shinkyo, R., Ohta, M., Inouye, K. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  32. Vitamin D metabolism and osteomalacia in cystic fibrosis. Friedman, H.Z., Langman, C.B., Favus, M.J. Gastroenterology (1985) [Pubmed]
  33. Diminished and erratic absorption of ergocalciferol in adult cystic fibrosis patients. Lark, R.K., Lester, G.E., Ontjes, D.A., Blackwood, A.D., Hollis, B.W., Hensler, M.M., Aris, R.M. Am. J. Clin. Nutr. (2001) [Pubmed]
  34. The relations between vitamin D2 and D3 in the diet and plasma 25OHD2 and 25OHD3 in elderly women in Great Britain. Newton, H.M., Sheltawy, M., Hay, A.W., Morgan, B. Am. J. Clin. Nutr. (1985) [Pubmed]
  35. Metabolic bone disease of total parenteral nutrition: course after changing from casein to amino acids in parenteral solutions with reduced aluminum content. Vargas, J.H., Klein, G.L., Ament, M.E., Ott, S.M., Sherrard, D.J., Horst, R.L., Berquist, W.E., Alfrey, A.C., Slatopolsky, E., Coburn, J.W. Am. J. Clin. Nutr. (1988) [Pubmed]
  36. 24,25,28-trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2: novel metabolites of vitamin D2. Reddy, G.S., Tserng, K.Y. Biochemistry (1990) [Pubmed]
WikiGenes - Universities