The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Skull

  • Both OAF and PTH inhibit collagen synthesis in fetal rat calvaria at the concentrations that stimulate bone resorption [1].
  • We have identified Twist target genes using human mutant calvaria osteoblastic cells from a child with Saethre-Chotzen syndrome with a Twist mutation that introduces a stop codon upstream of the bHLH domain [2].
  • Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects [3].
  • These studies demonstrate the expression of the key inflammatory cytokine interleukin-6 by osteoblasts in organ cultures of neonatal mouse calvaria, and in vivo using a mouse model that closely resembles the pathology of trauma-induced staphylococcal osteomyelitis, as determined by confocal microscopic analysis [4].
  • We have shown previously that the hypomineralization defects of the calvarium and vertebrae of tissue nonspecific alkaline phosphatase (TNAP)-deficient (Akp2-/-) hypophosphatasia mice are rescued by simultaneous deletion of the Enpp1 gene, which encodes nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) [5].

High impact information on Skull


Chemical compound and disease context of Skull


Biological context of Skull


Anatomical context of Skull


Associations of Skull with chemical compounds


Gene context of Skull

  • When the OBs were differentiated in vitro by treatment with bone morphogenic protein 2, the OBs from TIEG(+/+) calvaria displayed several mineralized nodules in culture, whereas those from TIEG(-/-) mice showed no nodules [27].
  • Expression of E2A and FGFR3 was seen at the location of osteoblast differentiation in the calvaria of mouse embryos, implicating bHLH molecules in physiological osteoblast differentiation [28].
  • The concentrations of IL-1 beta were high enough to induce bone resorption in the newborn mouse calvaria assay and the BRA was totally abolished by pretreatment of the supernatants with anti-IL-1 beta antibody but not with either anti-IL-1 alpha antibody or normal serum [29].
  • We also carried out a detailed expression analysis of the helix-loop-helix factors (HLH) Twist and Id1 during calvaria and suture development (E10-P6) [30].
  • Dlx5 may perform a general role in skeletal differentiation, as exemplified by hypomineralization within the calvaria [31].

Analytical, diagnostic and therapeutic context of Skull


  1. Effect of osteoclast activating factor from human leukocytes on bone metabolism. Raisz, L.G., Luben, R.A., Mundy, G.R., Dietrich, J.W., Horton, J.E., Trummel, C.L. J. Clin. Invest. (1975) [Pubmed]
  2. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. Yousfi, M., Lasmoles, F., Lomri, A., Delannoy, P., Marie, P.J. J. Clin. Invest. (2001) [Pubmed]
  3. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito, Y., Yeo, J.Y., Chytil, A., Han, J., Bringas, P., Nakajima, A., Shuler, C.F., Moses, H.L., Chai, Y. Development (2003) [Pubmed]
  4. Osteoblasts express the inflammatory cytokine interleukin-6 in a murine model of Staphylococcus aureus osteomyelitis and infected human bone tissue. Marriott, I., Gray, D.L., Tranguch, S.L., Fowler, V.G., Stryjewski, M., Scott Levin, L., Hudson, M.C., Bost, K.L. Am. J. Pathol. (2004) [Pubmed]
  5. Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Anderson, H.C., Harmey, D., Camacho, N.P., Garimella, R., Sipe, J.B., Tague, S., Bi, X., Johnson, K., Terkeltaub, R., Millán, J.L. Am. J. Pathol. (2005) [Pubmed]
  6. Stimulation of bone formation in vitro and in rodents by statins. Mundy, G., Garrett, R., Harris, S., Chan, J., Chen, D., Rossini, G., Boyce, B., Zhao, M., Gutierrez, G. Science (1999) [Pubmed]
  7. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance. Wyrwicz, A.M., Pszenny, M.H., Schofield, J.C., Tillman, P.C., Gordon, R.E., Martin, P.A. Science (1983) [Pubmed]
  8. A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Kream, B.E., Jose, M., Yamada, S., DeLuca, H.F. Science (1977) [Pubmed]
  9. Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. Flenniken, A.M., Williams, B.R. Genes Dev. (1990) [Pubmed]
  10. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. Zhang, X., Schwarz, E.M., Young, D.A., Puzas, J.E., Rosier, R.N., O'Keefe, R.J. J. Clin. Invest. (2002) [Pubmed]
  11. Alpha and beta human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Tashjian, A.H., Voelkel, E.F., Lazzaro, M., Singer, F.R., Roberts, A.B., Derynck, R., Winkler, M.E., Levine, L. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  12. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Fisher, J.E., Rogers, M.J., Halasy, J.M., Luckman, S.P., Hughes, D.E., Masarachia, P.J., Wesolowski, G., Russell, R.G., Rodan, G.A., Reszka, A.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  13. Bone-resorbing activity of thyroid hormones is related to prostaglandin production in cultured neonatal mouse calvaria. Klaushofer, K., Hoffmann, O., Gleispach, H., Leis, H.J., Czerwenka, E., Koller, K., Peterlik, M. J. Bone Miner. Res. (1989) [Pubmed]
  14. Leukotriene B4 stimulates osteoclastic bone resorption both in vitro and in vivo. Garcia, C., Boyce, B.F., Gilles, J., Dallas, M., Qiao, M., Mundy, G.R., Bonewald, L.F. J. Bone Miner. Res. (1996) [Pubmed]
  15. Inhibition of in vitro bone resorption by a parathyroid hormone receptor antagonist in the canine adenocarcinoma model of humoral hypercalcemia of malignancy. Rosol, T.J., Capen, C.C. Endocrinology (1988) [Pubmed]
  16. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. Mansukhani, A., Bellosta, P., Sahni, M., Basilico, C. J. Cell Biol. (2000) [Pubmed]
  17. Cloning, sequence, and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. Ek-Rylander, B., Bill, P., Norgård, M., Nilsson, S., Andersson, G. J. Biol. Chem. (1991) [Pubmed]
  18. Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. Harris, S.E., Bonewald, L.F., Harris, M.A., Sabatini, M., Dallas, S., Feng, J.Q., Ghosh-Choudhury, N., Wozney, J., Mundy, G.R. J. Bone Miner. Res. (1994) [Pubmed]
  19. Retinoic acid-induced changes in 1 alpha,25-dihydroxyvitamin D3 receptor levels in tumor and nontumor cells derived from rat bone. Petkovich, P.M., Heersche, J.N., Aubin, J.E., Grigoriadis, A.E., Jones, G. J. Natl. Cancer Inst. (1987) [Pubmed]
  20. Vitamin D deficiency causes a selective reduction in deposition of transforming growth factor beta in rat bone: possible mechanism for impaired osteoinduction. Finkelman, R.D., Linkhart, T.A., Mohan, S., Lau, K.H., Baylink, D.J., Bell, N.H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  21. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. Jain, R.G., Lenhard, J.M. J. Biol. Chem. (2002) [Pubmed]
  22. Regulation of collagen synthesis in fetal rat calvaria by 1,25-dihydroxyvitamin D3. Rowe, D.W., Kream, B.E. J. Biol. Chem. (1982) [Pubmed]
  23. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. Tabb, M.M., Sun, A., Zhou, C., Grün, F., Errandi, J., Romero, K., Pham, H., Inoue, S., Mallick, S., Lin, M., Forman, B.M., Blumberg, B. J. Biol. Chem. (2003) [Pubmed]
  24. Bone resorption in organ culture: inhibition by the divalent cation ionophores A23187 and X-537A. Ivey, J.L., Wright, D.R., Tashjian, A.H. J. Clin. Invest. (1976) [Pubmed]
  25. Human transforming growth factor-alpha stimulates bone resorption in vitro. Stern, P.H., Krieger, N.S., Nissenson, R.A., Williams, R.D., Winkler, M.E., Derynck, R., Strewler, G.J. J. Clin. Invest. (1985) [Pubmed]
  26. Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture. Krieger, N.S., Stappenbeck, T.S., Stern, P.H. J. Clin. Invest. (1987) [Pubmed]
  27. TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Subramaniam, M., Gorny, G., Johnsen, S.A., Monroe, D.G., Evans, G.L., Fraser, D.G., Rickard, D.J., Rasmussen, K., van Deursen, J.M., Turner, R.T., Oursler, M.J., Spelsberg, T.C. Mol. Cell. Biol. (2005) [Pubmed]
  28. Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Funato, N., Ohtani, K., Ohyama, K., Kuroda, T., Nakamura, M. Mol. Cell. Biol. (2001) [Pubmed]
  29. Production of interleukin 1 beta, a potent bone resorbing cytokine, by cultured human myeloma cells. Yamamoto, I., Kawano, M., Sone, T., Iwato, K., Tanaka, H., Ishikawa, H., Kitamura, N., Lee, K., Shigeno, C., Konishi, J. Cancer Res. (1989) [Pubmed]
  30. Integration of FGF and TWIST in calvarial bone and suture development. Rice, D.P., Aberg, T., Chan, Y., Tang, Z., Kettunen, P.J., Pakarinen, L., Maxson, R.E., Thesleff, I. Development (2000) [Pubmed]
  31. Dlx5 regulates regional development of the branchial arches and sensory capsules. Depew, M.J., Liu, J.K., Long, J.E., Presley, R., Meneses, J.J., Pedersen, R.A., Rubenstein, J.L. Development (1999) [Pubmed]
  32. Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. Beck, L., Soumounou, Y., Martel, J., Krishnamurthy, G., Gauthier, C., Goodyer, C.G., Tenenhouse, H.S. J. Clin. Invest. (1997) [Pubmed]
  33. Temporal changes of mRNA expression of matrix proteins and parathyroid hormone and parathyroid hormone-related protein (PTH/PTHrP) receptor in bone development. Kondo, H., Ohyama, T., Ohya, K., Kasugai, S. J. Bone Miner. Res. (1997) [Pubmed]
  34. Utilization of FPLC-purified bacterial collagenase for the isolation of cells from bone. Hefley, T.J. J. Bone Miner. Res. (1987) [Pubmed]
  35. Collagenolytic cysteine proteinases of bone tissue. Cathepsin B, (pro)cathepsin L and a cathepsin L-like 70 kDa proteinase. Delaissé, J.M., Ledent, P., Vaes, G. Biochem. J. (1991) [Pubmed]
  36. Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and -4. Nagai, M., Ota, M. J. Dent. Res. (1994) [Pubmed]
WikiGenes - Universities