The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cyanopindolol     4-[2-hydroxy-3-(tert- butylamino)propoxy]...

Synonyms: CHEMBL378501, SureCN353756, NSC-707473, CTK8E9328, NSC707473, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC707473

 

High impact information on NSC707473

  • We have recently reported that the highly potent beta-adrenergic affinity label [125I]bromoacetylamino cyanopindolol ([125I]BAM-CYP) irreversibly blocks the turkey erythrocyte beta-adrenoceptor binding site by combining with a receptor-associated non-protein component [6].
  • The neuropeptide somatostatin potentiates beta-adrenergic receptor-mediated cAMP formation in astrocytes derived from neonatal rat cortex but does not affect cAMP levels by itself. beta-Adrenergic receptors in these cells can be specifically labeled with the high affinity antagonist [125I] cyanopindolol ([125I]CYP) [7].
  • Beta-receptors were measured in longitudinal sections of ligated rat sciatic nerve by autoradiographic localization of 125I-labeled cyanopindolol binding sites [8].
  • METHODS: Employing enriched nuclear preparations, we assayed the specific presence of betaAR by measuring 125I-cyanopindolol (CYP) binding, Western blotting, confocal microscopy and functional assays [9].
  • The response to 5-HT was reversed by the 5-HT1 receptor antagonists cyanopindolol and pindolol, but not the 5-HT2 receptor antagonist ketanserin [10].
 

Chemical compound and disease context of NSC707473

 

Biological context of NSC707473

  • Castration resulted in decreased catecholamine-induced as well as forskolin-induced lipolysis. beta-adrenoceptor number, examined by a whole cell cyanopindolol binding assay, was also diminished to a similar extent [11].
  • 8. CGP 12177 0.01 and 0.1 mumol kg-1 and cyanopindolol 1 mumol kg-1 elicited an increase in diastolic blood pressure [12].
  • [3H]5-CT binding was inhibited by cyanopindolol with an IC50 of 0.87 +/- 0.30 nM, suggesting the expression of the 5-HT1B receptor in these neurons [13].
  • EPO levels did not elevate, even after bloodletting to load anemia, and the EPO circadian rhythm was irregular in 6-OHDA-treated rats. beta-adrenergic receptors measured using 125I-cyanopindolol (CYP) significantly decreased from day 7 to day 28, and reached normal values after day 35 [14].
 

Anatomical context of NSC707473

 

Associations of NSC707473 with other chemical compounds

 

Gene context of NSC707473

 

Analytical, diagnostic and therapeutic context of NSC707473

References

  1. Hypothalamic-pituitary-thyroid axis and sympathetic nervous system involvement in hyperthermia induced by 3,4-methylenedioxymethamphetamine (Ecstasy). Sprague, J.E., Banks, M.L., Cook, V.J., Mills, E.M. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  2. Further evidence for differences between cardiac atypical beta-adrenoceptors and brown adipose tissue beta3-adrenoceptors in the pithed rat. Malinowska, B., Schlicker, E. Br. J. Pharmacol. (1997) [Pubmed]
  3. Hypothermia induced by m-trifluoromethylphenylpiperazine or m-chlorophenylpiperazine: an effect mediated by 5-HT1B receptors? Maj, J., Chojnacka-Wójcik, E., Kłodzińska, A., Dereń, A., Moryl, E. J. Neural Transm. (1988) [Pubmed]
  4. Beta3 receptors mediate relaxation in stomach fundus whereas a fourth beta receptor mediates tachycardia in atria from transgenic beta3 receptor knockout mice. Cohen, M.L., Bloomquist, W., Ito, M., Lowell, B.B. Recept. Channels (2000) [Pubmed]
  5. Effects of coronary arterial reperfusion on beta-adrenergic receptor-adenylyl cyclase coupling. Vatner, D.E., Kiuchi, K., Manders, W.T., Vatner, S.F. Am. J. Physiol. (1993) [Pubmed]
  6. Association of turkey erythrocyte beta-adrenoceptors with a specific lipid component. Bar-Sinai, A., Aldouby, Y., Chorev, M., Levitzki, A. EMBO J. (1986) [Pubmed]
  7. Somatostatin alters beta-adrenergic receptor-effector coupling in cultured rat astrocytes. Niehoff, D.L., Mudge, A.W. EMBO J. (1985) [Pubmed]
  8. Axonal transport of beta-adrenergic receptors. Antero- and retrogradely transported receptors differ in agonist affinity and nucleotide sensitivity. Zarbin, M.A., Palacios, J.M., Wamsley, J.K., Kuhar, M.J. Mol. Pharmacol. (1983) [Pubmed]
  9. Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Boivin, B., Lavoie, C., Vaniotis, G., Baragli, A., Villeneuve, L.R., Ethier, N., Trieu, P., Allen, B.G., Hébert, T.E. Cardiovasc. Res. (2006) [Pubmed]
  10. Functional coupling of endogenous serotonin (5-HT1B) and calcitonin (C1a) receptors in CHO cells to a cyclic AMP-responsive luciferase reporter gene. George, S.E., Bungay, P.J., Naylor, L.H. J. Neurochem. (1997) [Pubmed]
  11. Testosterone increases lipolysis and the number of beta-adrenoceptors in male rat adipocytes. Xu, X.F., De Pergola, G., Björntorp, P. Endocrinology (1991) [Pubmed]
  12. Mediation of the positive chronotropic effect of CGP 12177 and cyanopindolol in the pithed rat by atypical beta-adrenoceptors, different from beta 3-adrenoceptors. Malinowska, B., Schlicker, E. Br. J. Pharmacol. (1996) [Pubmed]
  13. Multiple subtypes of serotonin receptors are expressed in rat sensory neurons in culture. Chen, J.J., Vasko, M.R., Wu, X., Staeva, T.P., Baez, M., Zgombick, J.M., Nelson, D.L. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  14. Mechanism of anemia associated with autonomic dysfunction in rats. Obayashi, K., Ando, Y., Terazaki, H., Yamashita, T., Nakamura, M., Suga, M., Uchino, M., Ando, M. Autonomic neuroscience : basic & clinical. (2000) [Pubmed]
  15. Human fat cell beta-adrenergic receptors: beta-agonist-dependent lipolytic responses and characterization of beta-adrenergic binding sites on human fat cell membranes with highly selective beta 1-antagonists. Mauriège, P., De Pergola, G., Berlan, M., Lafontan, M. J. Lipid Res. (1988) [Pubmed]
  16. Atypical responses of rat ileum to pindolol, cyanopindolol and iodocyanopindolol. Hoey, A., Jackson, C., Pegg, G., Sillence, M. Br. J. Pharmacol. (1996) [Pubmed]
  17. Impairment of the low-affinity state beta1-adrenoceptor-induced relaxation in spontaneously hypertensive rats. Mallem, M.Y., Toumaniantz, G., Serpillon, S., Gautier, F., Gogny, M., Desfontis, J.C., Gauthier, C. Br. J. Pharmacol. (2004) [Pubmed]
  18. Differences between the third cardiac beta-adrenoceptor and the colonic beta 3-adrenoceptor in the rat. Kaumann, A.J., Molenaar, P. Br. J. Pharmacol. (1996) [Pubmed]
  19. Desensitization of beta2-adrenoceptor-mediated responses by short-acting beta2-adrenoceptor agonists in human lung mast cells. Chong, L.K., Suvarna, K., Chess-Williams, R., Peachell, P.T. Br. J. Pharmacol. (2003) [Pubmed]
  20. Characterization of the contractile serotonergic receptor in guinea pig trachea with agonists and antagonists. Watts, S.W., Cohen, M.L. J. Pharmacol. Exp. Ther. (1992) [Pubmed]
  21. Colitis-induced alterations in adrenergic control of circular smooth muscle in vitro in rats. Zhao, A., Bossone, C., Piñeiro-Carrero, V., Shea-Donohue, T. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  22. Effects of 5-hydroxytryptamine agonists and antagonists on the responses of rat spinal motoneurones to raphe obscurus stimulation. Roberts, M.H., Davies, M., Girdlestone, D., Foster, G.A. Br. J. Pharmacol. (1988) [Pubmed]
  23. Evidence that 5-HT2c receptor antagonists are anxiolytic in the rat Geller-Seifter model of anxiety. Kennett, G.A., Pittaway, K., Blackburn, T.P. Psychopharmacology (Berl.) (1994) [Pubmed]
  24. Interactions of isamoltane (CGP 361A), an anxiolytic phenoxypropanolamine derivative, with 5-HT1 receptor subtypes in the rat brain. Waldmeier, P.C., Williams, M., Baumann, P.A., Bischoff, S., Sills, M.A., Neale, R.F. Naunyn Schmiedebergs Arch. Pharmacol. (1988) [Pubmed]
  25. The hypophagic effect of restraint stress in rats can be mediated by 5-HT2 receptors in the paraventricular nucleus of the hypothalamus. Grignaschi, G., Mantelli, B., Samanin, R. Neurosci. Lett. (1993) [Pubmed]
  26. Apparent absence of serotonin1B receptors in biopsied and post-mortem human brain. Martial, J., Lal, S., Dalpé, M., Olivier, A., de Montigny, C., Quirion, R. Synapse (1989) [Pubmed]
  27. 5-HT7 receptors mediate serotonergic effects on light-sensitive suprachiasmatic nucleus neurons. Ying, S.W., Rusak, B. Brain Res. (1997) [Pubmed]
  28. Effects of weight reduction on the regulation of lipolysis in adipocytes of women with upper-body obesity. Reynisdottir, S., Langin, D., Carlström, K., Holm, C., Rössner, S., Arner, P. Clin. Sci. (1995) [Pubmed]
  29. A radioreceptor assay in which iodocyanopindolol is used to determine propranolol and its active metabolites in unextracted serum or plasma. Elkins, R.P., Kelly, J.F., Rosenberg, B.J. Clin. Chem. (1986) [Pubmed]
  30. Site-directed mutagenesis of the rat beta1-adrenoceptor. Involvement of Tyr356 (7.43) in (+/-)cyanopindolol but not (+/-)[125Iodo]cyanopindolol binding. Rezmann-Vitti, L.A., Louis, S.N., Nero, T.L., Jackman, G.P., Machida, C.A., Louis, W.J. European journal of medicinal chemistry. (2004) [Pubmed]
  31. Effects of fiber type and training on beta-adrenoceptor density in human skeletal muscle. Martin, W.H., Coggan, A.R., Spina, R.J., Saffitz, J.E. Am. J. Physiol. (1989) [Pubmed]
  32. Absence of mitochondrial beta-adrenoceptors in guinea pig myocardium: evidence for tissue disparity. Russell, F.D., Molenaar, P., Summers, R.J. Gen. Pharmacol. (1992) [Pubmed]
 
WikiGenes - Universities