The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cetapril     (2S)-2-[[(2S)-1-[(2R)-3- ethanoylsulfanyl-2...

Synonyms: alacepril, aracepril, Alaceprilum, Cetapril (TN), CHEMBL2103775, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of DU 1219

 

Psychiatry related information on DU 1219

 

High impact information on DU 1219

  • CONCLUSIONS: Both amlodipine and alacepril decreased blood pressure and urinary protein, and ameliorated the renal injury induced by the HC diet in rats [7].
  • DESIGN AND METHODS: Male Sprague-Dawley rats were given either an HC diet only (n = 5), an HC diet and amlodipine (n = 10) or an HC diet and alacepril (n = 10) [7].
  • The response of the renal eicosanoid system to alacepril was inadequate, but cyclic GMP excretion, an indicator of nitric oxide formation, was significantly enhanced and lipid peroxidation in the kidney was decreased [8].
  • PURPOSE: In this work, the alacepril thiolesterase, which catalyzes the hydrolyzing reaction of the thiolester linkage in alacepril and the conversion from alacepril to deacetylalacepril, was purified from rat liver cytosol and characterized [9].
  • Plasma renin activity was significantly increased (p<0.05) after administration of alacepril, indicating that alacepril significantly blocked ACE activity in our patients [3].
 

Chemical compound and disease context of DU 1219

 

Biological context of DU 1219

 

Anatomical context of DU 1219

  • Alacepril, an ACE inhibitor with SH-group, inhibited the oxygen radical production and generation by lung alveolar macrophages harvested from both rats and guinea pigs in a dose-dependent fashion [15].
  • Angiotensin-converting enzyme (ACE) activity in the thoracic aorta in the high-cholesterol-diet group was significantly higher than that in the normal-diet group, and the ACE activities in the alacepril groups were lower than that in the high-cholesterol-diet group [16].
  • These results suggest that alacepril works as anti-atherogenic agent through inhibiting endothelial-dependent adhesive interactions with monocytes induced by 7-KC and TNF-alpha [17].
  • Antihypertensive mechanism of alacepril. Effects of its metabolites on the peripheral sympathetic nervous system [18].
  • Alacepril at the oral dose of 60 mg/kg decreased the total acidity in pylorus ligated rats, and at higher doses depressed the intestinal charcoal meal passage in mice [19].
 

Associations of DU 1219 with other chemical compounds

 

Gene context of DU 1219

  • Alacepril inhibited the production of ROS in HAECs stimulated by 7-KC or TNF-alpha [17].
  • Antihypertensive activity of alacepril, an orally active angiotensin converting enzyme inhibitor, in renal hypertensive rats and dogs [24].
  • These results indicate that the antihypertensive activity of alacepril is due to the suppression of renin-angiotensin-aldosterone system and the enhancement of kallikrein-kinin-prostaglandin system through the inhibition of ACE (kininase II) activity in vivo [25].
  • Alacepril (1-[(S)-3-acetylthio-2-methylpropanoyl]-L-prolyl-L-phenylalanine, DU-1219) showed a dose related and long lasting antihypertensive effect in renal hypertensive rats (two-kidney, one-clip), a typical renin dependent hypertensive model [24].
  • Alacepril, an ACE inhibitor bearing SH-group, inhibited the oxygen radical production and generation by BAL cells from COPD patients in a dose-dependent fashion [26].
 

Analytical, diagnostic and therapeutic context of DU 1219

References

  1. Effect of alacepril on blood pressure and neurohumoral factors at rest and during dynamic exercise in patients with essential hypertension. Kinugawa, T., Kitamura, H., Ogino, K., Noguchi, N., Matsumoto, T., Hisatome, I., Miyakoda, H., Kotake, H., Mashiba, H. British journal of clinical pharmacology. (1992) [Pubmed]
  2. Effects of a long-term treatment with alacepril on left ventricular hypertrophy and function in patients with essential hypertension. Sumimoto, T., Ochi, T., Hiwada, K. Journal of clinical pharmacology. (1992) [Pubmed]
  3. Effects of angiotensin-converting enzyme inhibitor alacepril in patients with stable effort angina during chronic isosorbide dinitrate treatment. Murohara, T., Tayama, S., Tabuchi, T., Sumida, H., Honda, T., Hayasaki, K., Yasue, H. Am. J. Cardiol. (1996) [Pubmed]
  4. Effects of the angiotensin converting enzyme inhibitors captopril, rentiapril, and alacepril in patients with essential and renovascular hypertension. Ideishi, M., Sasaguri, M., Ikeda, M., Arakawa, K. Clinical therapeutics. (1989) [Pubmed]
  5. Effect of alacepril on 24-hour blood pressure in elderly hypertensive patients. Kohara, K., Hara-Nakamura, N., Takada, Y., Iwata, T., Ochi, T., Kukita, H., Muneta, S., Hiwada, K. International journal of clinical pharmacology and therapeutics. (1996) [Pubmed]
  6. General pharmacology of the novel angiotensin converting enzyme inhibitor alacepril. 2nd communication: Effects on central nervous and sensory systems and on the other functions. Matsuno, Y., Hori, H., Oka, M., Nakamura, H., Ito, T., Kadokawa, T. Arzneimittel-Forschung. (1986) [Pubmed]
  7. Effects of alacepril and amlodipine on the renal injury induced by a high-cholesterol diet in rats. Atarashi, K., Takagi, M., Minami, M., Ishiyama, A. J. Hypertens. (1999) [Pubmed]
  8. Mechanistic analysis of renal protection by angiotensin converting enzyme inhibitor in Dahl salt-sensitive rats. Hirawa, N., Uehara, Y., Kawabata, Y., Ohshima, N., Ono, H., Nagata, T., Gomi, T., Ikeda, T., Goto, A., Yagi, S. J. Hypertens. (1994) [Pubmed]
  9. Sialic acid 9-O-acetylesterase catalyzes the hydrolyzing reaction from alacepril to deacetylalacepril. Usui, S., Kubota, M., Iguchi, K., Kiho, T., Sugiyama, T., Katagiri, Y., Hirano, K. Pharm. Res. (2003) [Pubmed]
  10. Tissue levels, tissue angiotensin converting enzyme inhibition and antihypertensive effect of the novel antihypertensive agent alacepril in renal hypertensive rats. Nambu, K., Matsumoto, K., Takeyama, K., Hosoki, K., Miyazaki, H., Hashimoto, M. Arzneimittel-Forschung. (1986) [Pubmed]
  11. The ACE inhibitor alacepril suppresses atherogenesis independent of serum lipids in cholesterol-fed rabbits--critical analysis with new ultrasound technique. Itoh, K., Yoshida, S., Fukuda, M. Jpn. Circ. J. (1994) [Pubmed]
  12. Effects of a new angiotensin-converting enzyme inhibitor, alacepril, on changes in neurohormonal factors and arterial baroreflex sensitivity in patients with congestive heart failure. Kinugawa, T., Kato, M., Mori, M., Endo, A., Kato, T., Hamada, T., Noguchi, N., Omodani, H., Osaki, S., Ogino, K., Miyakoda, H., Hisatome, I., Shigemasa, C. Eur. J. Clin. Pharmacol. (1998) [Pubmed]
  13. Effect of antihypertensive treatment with alacepril on insulin resistance in diabetic spontaneously hypertensive rats. Sato, T., Nara, Y., Kato, Y., Yamori, Y. Metab. Clin. Exp. (1996) [Pubmed]
  14. Renal effects of alacepril in essential hypertension. Tomita, K., Nonoguchi, H., Terada, Y., Marumo, F. J. Cardiovasc. Pharmacol. (1992) [Pubmed]
  15. Effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radical production and generation by murine lung alveolar macrophages. Suzuki, M., Teramoto, S., Katayama, H., Ohga, E., Matsuse, T., Ouchi, Y. The Journal of asthma : official journal of the Association for the Care of Asthma. (1999) [Pubmed]
  16. Antiatherosclerotic effect of alacepril, an angiotensin-converting enzyme inhibitor, in monkeys fed a high-cholesterol diet. Miyazaki, M., Takai, S. Hypertens. Res. (1999) [Pubmed]
  17. The inhibitory effect of alacepril, an angiotensin-converting enzyme inhibitor, on endothelial inflammatory response induced by oxysterol and TNF-alpha. Shimozawa, M., Naito, Y., Manabe, H., Uchiyama, K., Katada, K., Kuroda, M., Nakabe, N., Yoshida, N., Yoshikawa, T. Redox Rep. (2004) [Pubmed]
  18. Antihypertensive mechanism of alacepril. Effects of its metabolites on the peripheral sympathetic nervous system. Minato, H., Hosoki, K., Hayashi, K., Sawayama, T., Kadokawa, T., Hashimoto, M. Arzneimittel-Forschung. (1989) [Pubmed]
  19. General pharmacology of the novel angiotensin converting enzyme inhibitor alacepril. 1st communication: Effects on cardiovascular, visceral and renal functions and on blood. Matsuno, Y., Taira, N., Fujitani, B., Ito, T., Kadokawa, T. Arzneimittel-Forschung. (1986) [Pubmed]
  20. Inhibitory effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radicals produced by bronchoalveolar lavage cells in young and aged guinea pigs. Teramoto, S., Suzuki, M., Matsuse, T., Ohga, E., Ishii, T., Ouchi, Y. Aging (Milan, Italy) (2000) [Pubmed]
  21. Both a calcium antagonist and ACE inhibitor reverse hypertrophy in hypertension but a calcium antagonist also depresses contractility. Sumimoto, T., Ochi, T., Ito, T., Joh, T., Muneta, S., Hiwada, K. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. (1997) [Pubmed]
  22. Cardiac hypertrophy-related gene expression in spontaneously hypertensive rats: crucial role of angiotensin AT1 receptor. Ohta, K., Kim, S., Hamaguchi, A., Miura, K., Yukimura, T., Iwao, H. Jpn. J. Pharmacol. (1995) [Pubmed]
  23. Antihypertensive mechanism of alacepril: effect on norepinephrine-induced vasoconstrictive response in vitro and in vivo. Takeyama, K., Minato, H., Ikeno, A., Hosoki, K., Kadokawa, T. Arzneimittel-Forschung. (1986) [Pubmed]
  24. Antihypertensive activity of alacepril, an orally active angiotensin converting enzyme inhibitor, in renal hypertensive rats and dogs. Takeyama, K., Minato, H., Fukuya, F., Kawahara, S., Hosoki, K., Kadokawa, T. Arzneimittel-Forschung. (1985) [Pubmed]
  25. Effect of alacepril on renin-angiotensin-aldosterone system and kallikrein-kinin-prostaglandin system in experimental animals. Hosoki, K., Takeyama, K., Minato, H., Fukuya, F., Kawahara, S., Kadokawa, T. Arzneimittel-Forschung. (1986) [Pubmed]
  26. Effects of angiotensin-converting enzyme inhibitors on spontaneous or stimulated generation of reactive oxygen species by bronchoalveolar lavage cells harvested from patients with or without chronic obstructive pulmonary disease. Teramoto, S., Suzuki, M., Matsuse, T., Ishii, T., Fukuchi, Y., Ouchi, Y. Jpn. J. Pharmacol. (2000) [Pubmed]
  27. Effect of antihypertensive therapy on aortic distensibility in patients with essential hypertension: comparison with trichlormethiazide, nicardipine and alacepril. Honda, T., Hamada, M., Shigematsu, Y., Matsumoto, Y., Matsuoka, H., Hiwada, K. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy. (1999) [Pubmed]
  28. Effects of long-term medication for essential hypertension on cardiac hypertrophy and function. Takeda, N., Nakamura, I., Hatanaka, T., Iwai, T., Tanamura, A., Obara, Y., Nagano, M. Basic Res. Cardiol. (1991) [Pubmed]
 
WikiGenes - Universities