The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Leukapheresis


High impact information on Leukapheresis


Chemical compound and disease context of Leukapheresis


Biological context of Leukapheresis


Anatomical context of Leukapheresis

  • To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting [19].
  • The effects of the cationic anesthetic agents tetracaine and lidocaine on granulocyte function, morphology, and adherence to nylon fibers were studied in an attempt to improve current methods of granulocyte collection by filtration leukapheresis (FL) [20].
  • The leukapheresis products from 20 patients mobilized using cyclophosphamide (Cy) and granulocyte colony-stimulating factor (G-CSF) were examined for progenitor cell content [21].
  • During the third week after HD-CTX (ie, when CD34+ cells peak in the circulation), large-scale collection of PB leukocytes by three to four continuous-flow leukaphereses allows the yield of 2.19 to 2.73 x 10(9) or 0.45 to 0.56 x 10(9) CD34+ cells depending on whether or not patients receive rHuGM-CSF [22].
  • To obtain a significant debulking of unwanted cells from the leukapheresis, we developed a modified protocol of immune rosetting whereby human ABO-Rh- compatible red blood cells (RBCs) are treated with chromium chloride and then coated with murine monoclonal antibodies (MoAbs) against leukocyte antigens [23].

Associations of Leukapheresis with chemical compounds

  • Certain therapeutic interventions, including leukapheresis, temporary cessation of therapy with all-trans retinoic acid, and cytotoxic chemotherapy in moderate doses were not useful after respiratory distress was established [24].
  • Filtration leukapheresis: effects of donor stimulation with dexamethasone [25].
  • PBPC were collected by 2-hour single-blood volume leukapheresis on 2 consecutive days at the time of hematologic recovery from each cycle of doxorubicin [26].
  • Multiple leukaphereses were then performed during the rebound phase of hematological recovery following each CPA-induced nadir to harvest peripheral blood progenitors, which were then reinfused as rescue following each of four courses of CBDCA [27].
  • Three of the seven patients in whom mobilization was poor after G1 had > or =2x10(6) CD34(+) cells/kg with two leukaphereses after C2 [28].

Gene context of Leukapheresis


Analytical, diagnostic and therapeutic context of Leukapheresis


  1. Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis. Pettengell, R., Morgenstern, G.R., Woll, P.J., Chang, J., Rowlands, M., Young, R., Radford, J.A., Scarffe, J.H., Testa, N.G., Crowther, D. Blood (1993) [Pubmed]
  2. Phase I trial of anti-CD3-stimulated CD4+ T cells, infusional interleukin-2, and cyclophosphamide in patients with advanced cancer. Curti, B.D., Ochoa, A.C., Powers, G.C., Kopp, W.C., Alvord, W.G., Janik, J.E., Gause, B.L., Dunn, B., Kopreski, M.S., Fenton, R., Zea, A., Dansky-Ullmann, C., Strobl, S., Harvey, L., Nelson, E., Sznol, M., Longo, D.L. J. Clin. Oncol. (1998) [Pubmed]
  3. In vivo cytoreduction studies and cell sorting--enhanced tumor-cell detection in high-risk neuroblastoma patients: implications for leukapheresis strategies. Faulkner, L.B., Garaventa, A., Paoli, A., Tintori, V., Tamburini, A., Lacitignola, L., Veltroni, M., Lo Piccolo, M.S., Viscardi, E., Milanaccio, C., Tondo, A., Spinelli, S., Bernini, G., De Bernardi, B. J. Clin. Oncol. (2000) [Pubmed]
  4. Prolonged continuous intravenous infusion interleukin-2 and lymphokine-activated killer-cell therapy for metastatic renal cell carcinoma. Thompson, J.A., Shulman, K.L., Benyunes, M.C., Lindgren, C.G., Collins, C., Lange, P.H., Bush, W.H., Benz, L.A., Fefer, A. J. Clin. Oncol. (1992) [Pubmed]
  5. Mammaglobin expression in leukapheresis products is a predictive marker of poor prognosis in women with high-risk breast cancer. Ferrucci, P.F., Rabascio, C., Mazzetta, C., Cocorocchio, E., Agazzi, A., Vanazzi, A., Cinieri, S., Peccatori, F.A., Paolucci, M., Bertolini, F., Martinelli, G. Clin. Cancer Res. (2004) [Pubmed]
  6. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. Rosenberg, S.A., Lotze, M.T., Muul, L.M., Leitman, S., Chang, A.E., Ettinghausen, S.E., Matory, Y.L., Skibber, J.M., Shiloni, E., Vetto, J.T. N. Engl. J. Med. (1985) [Pubmed]
  7. Modulation of monocyte activation in patients with rheumatoid arthritis by leukapheresis therapy. Hahn, G., Stuhlmüller, B., Hain, N., Kalden, J.R., Pfizenmaier, K., Burmester, G.R. J. Clin. Invest. (1993) [Pubmed]
  8. In vivo distribution of recombinant interleukin-2-activated autologous lymphocytes administered by intra-arterial infusion in patients with renal cell carcinoma. Morita, T., Yonese, Y., Minato, N. J. Natl. Cancer Inst. (1987) [Pubmed]
  9. Large-scale collection of circulating haematopoietic progenitors in cancer patients treated with high-dose cyclophosphamide and recombinant human GM-CSF. Ravagnani, F., Siena, S., Bregni, M., Sciorelli, G., Gianni, A.M., Pellegris, G. Eur. J. Cancer (1990) [Pubmed]
  10. Addition of leukocytapheresis to steroid therapy: is it beneficial in recurrence of moderate-to-severe ulcerative colitis? Jo, Y., Matsumoto, T., Mibu, R., Iida, M. Dis. Colon Rectum (2003) [Pubmed]
  11. Intermittent leukapheresis: an adjunct to low-dose chemotherapy for Sézary syndrome. McEvoy, M.T., Zelickson, B.D., Pineda, A.A., Winkelmann, R.K. Acta Derm. Venereol. (1989) [Pubmed]
  12. Effects on cancer patients of leukapheresis with the continuous-flow blood cell separator. I. Hematologic and immunologic parameters in vivo. Waldman, S.R., Roth, J.A., Silverstein, M., Veltman, L.L., Pilch, Y.H. J. Lab. Clin. Med. (1975) [Pubmed]
  13. Rapid resolution of portal vein thrombosis and noncirrhotic portal hypertension following cyto-reductive therapy in a patient with chronic myeloid leukemia. Ince, A.T., Bölükbaş, C., Dalay, R., Sökmen, H.M., Kurdaş, O.O. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology. (2003) [Pubmed]
  14. Stem cell factor in combination with filgrastim after chemotherapy improves peripheral blood progenitor cell yield and reduces apheresis requirements in multiple myeloma patients: a randomized, controlled trial. Facon, T., Harousseau, J.L., Maloisel, F., Attal, M., Odriozola, J., Alegre, A., Schroyens, W., Hulin, C., Schots, R., Marin, P., Guilhot, F., Granena, A., De Waele, M., Pigneux, A., Méresse, V., Clark, P., Reiffers, J. Blood (1999) [Pubmed]
  15. Granulocyte colony-stimulating factor-induced comobilization of CD4- CD8- T cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors. Kusnierz-Glaz, C.R., Still, B.J., Amano, M., Zukor, J.D., Negrin, R.S., Blume, K.G., Strober, S. Blood (1997) [Pubmed]
  16. Peripheral blood CD34+ cells differ from bone marrow CD34+ cells in Thy-1 expression and cell cycle status in nonhuman primates mobilized or not mobilized with granulocyte colony-stimulating factor and/or stem cell factor. Donahue, R.E., Kirby, M.R., Metzger, M.E., Agricola, B.A., Sellers, S.E., Cullis, H.M. Blood (1996) [Pubmed]
  17. Immune function in severe, active rheumatoid arthritis: a relationship between peripheral blood mononuclear cell proliferation to soluble antigens and mononuclear cell subset profiles. Haraoui, B., Wilder, R.L., Malone, D.G., Allen, J.B., Katona, I.M., Wahl, S.M. J. Immunol. (1984) [Pubmed]
  18. Leukapheresis induced changes in cell cycle distribution and nucleoside transporters in patients with untreated acute myeloid leukemia. Powell, B.L., Gregory, B.W., Evans, J.K., White, J.C., Lyerly, E.S., Chorley, H.M., Russell, G.B., Capizzi, R.L. Leukemia (1991) [Pubmed]
  19. Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Matayoshi, A., Brown, C., DiPersio, J.F., Haug, J., Abu-Amer, Y., Liapis, H., Kuestner, R., Pacifici, R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  20. Reversal of granulocyte adherence to nylon fibers using local anesthetic agents: possible application to filtration leukapheresis. Schiffer, C.A., Sanel, F.T., Young, V.B., Aisner, J. Blood (1977) [Pubmed]
  21. Plastic-adherent progenitor cells in mobilized peripheral blood progenitor cell collections. Scott, M.A., Apperley, J.F., Jestice, H.K., Bloxham, D.M., Marcus, R.E., Gordon, M.Y. Blood (1995) [Pubmed]
  22. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Siena, S., Bregni, M., Brando, B., Ravagnani, F., Bonadonna, G., Gianni, A.M. Blood (1989) [Pubmed]
  23. Innovative two-step negative selection of granulocyte colony-stimulating factor-mobilized circulating progenitor cells: adequacy for autologous and allogeneic transplantation. Rambaldi, A., Borleri, G., Dotti, G., Bellavita, P., Amaru, R., Biondi, A., Barbui, T. Blood (1998) [Pubmed]
  24. The "retinoic acid syndrome" in acute promyelocytic leukemia. Frankel, S.R., Eardley, A., Lauwers, G., Weiss, M., Warrell, R.P. Ann. Intern. Med. (1992) [Pubmed]
  25. Filtration leukapheresis: effects of donor stimulation with dexamethasone. Higby, D.J., Henderson, E.S., Burnett, D., Cohen, E. Blood (1977) [Pubmed]
  26. Repetitive cycles of cyclophosphamide, thiotepa, and carboplatin intensification with peripheral-blood progenitor cells and filgrastim in advanced breast cancer patients. Shapiro, C.L., Ayash, L., Webb, I.J., Gelman, R., Keating, J., Williams, L., Demetri, G., Clark, P., Elias, A., Duggan, D., Hayes, D., Hurd, D., Henderson, I.C. J. Clin. Oncol. (1997) [Pubmed]
  27. Simultaneous dose escalation and schedule intensification of carboplatin-based chemotherapy using peripheral blood progenitor cells and filgrastim: a phase I trial. Fennelly, D., Wasserheit, C., Schneider, J., Hakes, T., Reich, L., Curtin, J., Yao, T.J., Markman, M., Norton, L., Crown, J. Cancer Res. (1994) [Pubmed]
  28. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocyte-macrophage colony-stimulating factor plus G-CSF. Koç, O.N., Gerson, S.L., Cooper, B.W., Laughlin, M., Meyerson, H., Kutteh, L., Fox, R.M., Szekely, E.M., Tainer, N., Lazarus, H.M. J. Clin. Oncol. (2000) [Pubmed]
  29. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., Mills, M., Wanzeck, J., Janowska-Wieczorek, A., Ratajczak, M.Z. Blood (2005) [Pubmed]
  30. Quality of IL-3 and G-CSF-mobilized peripheral blood stem cells in patients with early chronic phase CML. Heinzinger, M., Waller, C.F., Rosenstiel, A., Scheid, S., Burger, K.J., Lange, W. Leukemia (1998) [Pubmed]
  31. Cyclin A1 is predominantly expressed in hematological malignancies with myeloid differentiation. Krämer, A., Hochhaus, A., Saussele, S., Reichert, A., Willer, A., Hehlmann, R. Leukemia (1998) [Pubmed]
  32. Prolonged molecular remission after PML/RAR alpha-positive autologous peripheral blood stem cell transplantation in acute promyelocytic leukemia: is relevant pretransplant minimal residual disease in the graft? Sanz, M.A., de la Rubia, J., Bonanad, S., Barragán, E., Sempere, A., Martín, G., Martínez, J.A., Jiménez, C., Cervera, J., Bolufer, P., Sanz, G.F. Leukemia (1998) [Pubmed]
  33. Natural killer cell numbers and activity in mobilized peripheral blood stem cell grafts: conditions for in vitro expansion. Silva, M.R., Parreira, A., Ascensão, J.L. Exp. Hematol. (1995) [Pubmed]
  34. Serious adverse reactions to protamine sulfate: are alternatives needed? Weiler, J.M., Freiman, P., Sharath, M.D., Metzger, W.J., Smith, J.M., Richerson, H.B., Ballas, Z.K., Halverson, P.C., Shulan, D.J., Matsuo, S. J. Allergy Clin. Immunol. (1985) [Pubmed]
  35. Selecting the optimal dose of low-molecular-weight hydroxyethyl starch (Pentastarch) for granulocyte collection. Strauss, R.G., Villhauer, P.J., Imig, K.M., Eckermann, I., Gupta, S.D., Thomson, D.S. Transfusion (1987) [Pubmed]
  36. Effects of centrifugation leukapheresis with hydroxyethyl starch on the complement system of granulocyte donors. McLeod, B.C., Sassetti, R.J. Transfusion (1981) [Pubmed]
  37. Effect of alternating combination chemotherapy consisting of cyclophosphamide, doxorubicin, vincristine, cisplatin, and etoposide for small cell lung cancer on hematopoietic progenitors in the peripheral blood. Shimizu, E., Yamamoto, A., Takahashi, Y., Maniwa, K., Yoshida, S., Mukai, J., Takaue, Y., Ogura, T. Br. J. Cancer (1993) [Pubmed]
  38. Allogeneic transplants of rhG-CSF-mobilized peripheral blood stem cells (PBSC) from normal donors. GITMO. Gruppo Italiano Trapianto di Midollo Osseo. Majolino, I., Aversa, F., Bacigalupo, A., Bandini, G., Arcese, W., Reali, G. Haematologica (1995) [Pubmed]
WikiGenes - Universities