The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ADARB1  -  adenosine deaminase, RNA-specific, B1

Homo sapiens

Synonyms: ADAR2, ADAR2a, ADAR2a-L1, ADAR2a-L2, ADAR2a-L3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ADARB1


Psychiatry related information on ADARB1


High impact information on ADARB1


Chemical compound and disease context of ADARB1

  • Since glutamate receptor channels are essential elements in synaptic function and plasticity and mediate pathology in many neurological disorders, and since RED1 is central in glutamate receptor channel control, ADARB1 is a candidate gene for diseases with neurological symptoms, such as bipolar affective disorder and epilepsy [7].

Biological context of ADARB1


Anatomical context of ADARB1

  • In cultured cells, we observed that both human ADAR1 (hADAR1) and hADAR2 were capable of editing the amber/W site with comparable efficiencies [1].
  • We conclude that the GluR-B editing activity present in HeLa cell extracts and the recombinant hRED1 protein are indistinguishable [15].
  • Recovery of GluR2 Q/R site editing by expression of exogenous ADAR2b gene or a constitutively active CREB, VP16-CREB, which induces expression of endogenous ADAR2, protects vulnerable neurons in the rat hippocampus from forebrain ischemic insult [4].
  • Furthermore, the antibodies can immunodeplete a calf thymus extract of dsRNA adenosine deaminase activity, and the activity can be restored by addition of pure bovine deaminase [16].
  • Chromosomal storage of the RNA-editing enzyme ADAR1 in Xenopus oocytes [17].

Associations of ADARB1 with chemical compounds


Physical interactions of ADARB1


Enzymatic interactions of ADARB1

  • Editing of the human GluR-B transcript is catalyzed by the enzyme ADAR2 at the Q/R and R/G sites [18].

Regulatory relationships of ADARB1

  • These results suggest that Q/R site of GluRs editing is regulated in a regional, and hence presumably cell-specific, manner and that the GluR2 Q/R site editing is critically regulated by ADAR2 in human brain [22].

Other interactions of ADARB1

  • These changes correlate with a decrease in enzymatic activity of the editing enzyme adenosine deaminase acting on RNA (ADAR) 2, as deduced from analysis of ADAR2 self-editing [23].
  • As originally reported for rat RED1, the DRADA2a and -2b isoforms edit GluR-B RNA efficiently at the so-called Q/R site, whereas DRADA1 barely edits this site [11].
  • Adenosine deaminase that acts on RNA (ADAR)1 and ADAR2 are enzymes that catalyze such reactions, and each, when overexpressed, are capable of editing HDV RNA in vivo [24].
  • 3. This locus contains two genes expressed in the brain - ADARB1 and TRPM2 - involved in regulating intracellular Ca(2+) concentrations [25].
  • The founder member APOBEC1, which has been used as a paradigm, is an RNA-editing enzyme with proposed antecedents in yeast [26].

Analytical, diagnostic and therapeutic context of ADARB1

  • This variant accounts for between 13% and 20% of the total ADAR2 mRNA in each developmental stage and brain region examined, even though its translated product is not expressed at levels that are detectable by Western blot analysis [27].
  • Fluorescent in situ hybridization localized the DRADA gene on the long arm chromosome 1, region q21 [28].
  • In the presence of methyl-coenzyme M the red1 signal showed a more resolved 14N-superhyperfine splitting than in the presence of coenzyme M indicating a possible axial ligation of the substrate to the Ni(I) [29].
  • Targeted disruption of DEC1 drastically reduced both T-toxin production and virulence of race T to T-cytoplasm maize, whereas specific inactivation of RED1 had no apparent effect on T-toxin production (as determined by bioassay) or on virulence [30].
  • Homology modelling studies and site directed mutagenesis showed remarkable differences in three-dimensional structures and catalytic mechanisms between RED1 and RED2 [31].


  1. Hepatitis delta virus minimal substrates competent for editing by ADAR1 and ADAR2. Sato, S., Wong, S.K., Lazinski, D.W. J. Virol. (2001) [Pubmed]
  2. Inhibition of hepatitis delta virus RNA editing by short inhibitory RNA-mediated knockdown of ADAR1 but not ADAR2 expression. Jayan, G.C., Casey, J.L. J. Virol. (2002) [Pubmed]
  3. Map location, genomic organization and expression patterns of the human RED1 RNA editase. Villard, L., Tassone, F., Haymowicz, M., Welborn, R., Gardiner, K. Somat. Cell Mol. Genet. (1997) [Pubmed]
  4. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Peng, P.L., Zhong, X., Tu, W., Soundarapandian, M.M., Molner, P., Zhu, D., Lau, L., Liu, S., Liu, F., Lu, Y. Neuron (2006) [Pubmed]
  5. Dramatic increase of the RNA editing for glutamate receptor subunits during terminal differentiation of clonal human neurons. Lai, F., Chen, C.X., Lee, V.M., Nishikura, K. J. Neurochem. (1997) [Pubmed]
  6. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. Cenci, C., Barzotti, R., Galeano, F., Corbelli, S., Rota, R., Massimi, L., Di Rocco, C., O'Connell, M.A., Gallo, A. J. Biol. Chem. (2008) [Pubmed]
  7. Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. Mittaz, L., Scott, H.S., Rossier, C., Seeburg, P.H., Higuchi, M., Antonarakis, S.E. Genomics (1997) [Pubmed]
  8. Sequence analysis of ADARB1 gene in patients with familial bipolar disorder. Amore, M., Strippoli, P., Laterza, C., Tagariello, P., Vitale, L., Casadei, R., Frabetti, F., Canaider, S., Lenzi, L., D'Addabbo, P., Carinci, P., Torroni, A., Ferrari, G., Zannotti, M. Journal of affective disorders. (2004) [Pubmed]
  9. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Papavasiliou, F.N., Schatz, D.G. Cell (2002) [Pubmed]
  10. Regulation of alternative splicing by RNA editing. Rueter, S.M., Dawson, T.R., Emeson, R.B. Nature (1999) [Pubmed]
  11. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Lai, F., Chen, C.X., Carter, K.C., Nishikura, K. Mol. Cell. Biol. (1997) [Pubmed]
  12. Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. O'Connell, M.A., Gerber, A., Keller, W. J. Biol. Chem. (1997) [Pubmed]
  13. Increased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2. Jayan, G.C., Casey, J.L. J. Virol. (2002) [Pubmed]
  14. Structure and sequence determinants required for the RNA editing of ADAR2 substrates. Dawson, T.R., Sansam, C.L., Emeson, R.B. J. Biol. Chem. (2004) [Pubmed]
  15. Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing. Yang, J.H., Sklar, P., Axel, R., Maniatis, T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  16. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. O'Connell, M.A., Krause, S., Higuchi, M., Hsuan, J.J., Totty, N.F., Jenny, A., Keller, W. Mol. Cell. Biol. (1995) [Pubmed]
  17. Chromosomal storage of the RNA-editing enzyme ADAR1 in Xenopus oocytes. Sallacz, N.B., Jantsch, M.F. Mol. Biol. Cell (2005) [Pubmed]
  18. Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site. Jaikaran, D.C., Collins, C.H., MacMillan, A.M. J. Biol. Chem. (2002) [Pubmed]
  19. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Macbeth, M.R., Schubert, H.L., Vandemark, A.P., Lingam, A.T., Hill, C.P., Bass, B.L. Science (2005) [Pubmed]
  20. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Strehblow, A., Hallegger, M., Jantsch, M.F. Mol. Biol. Cell (2002) [Pubmed]
  21. Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Rothenburg, S., Schwartz, T., Koch-Nolte, F., Haag, F. Nucleic Acids Res. (2002) [Pubmed]
  22. Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Kawahara, Y., Ito, K., Sun, H., Kanazawa, I., Kwak, S. Eur. J. Neurosci. (2003) [Pubmed]
  23. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Maas, S., Patt, S., Schrey, M., Rich, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  24. Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Wong, S.K., Lazinski, D.W. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  25. Screening of chromosomal region 21q22.3 for mutations in genes associated with neuronal Ca(2+) signalling in bipolar affective disorder. Kostyrko, A., Hauser, J., Rybakowski, J.K., Trzeciak, W.H. Acta Biochim. Pol. (2006) [Pubmed]
  26. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K., Neuberger, M.S. Mol. Biol. Evol. (2005) [Pubmed]
  27. Novel splice variants of human ADAR2 mRNA: skipping of the exon encoding the dsRNA-binding domains, and multiple C-terminal splice sites. Kawahara, Y., Ito, K., Ito, M., Tsuji, S., Kwak, S. Gene (2005) [Pubmed]
  28. Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing. Wang, Y., Zeng, Y., Murray, J.M., Nishikura, K. J. Mol. Biol. (1995) [Pubmed]
  29. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states. Mahlert, F., Grabarse, W., Kahnt, J., Thauer, R.K., Duin, E.C. J. Biol. Inorg. Chem. (2002) [Pubmed]
  30. A decarboxylase encoded at the Cochliobolus heterostrophus translocation-associated Tox1B locus is required for polyketide (T-toxin) biosynthesis and high virulence on T-cytoplasm maize. Rose, M.S., Yun, S.H., Asvarak, T., Lu, S.W., Yoder, O.C., Turgeon, B.G. Mol. Plant Microbe Interact. (2002) [Pubmed]
  31. Remarkably different structures and reaction mechanisms of ketoreductases for the opposite stereochemical control in the biosynthesis of BIQ antibiotics. Taguchi, T., Kunieda, K., Takeda-Shitaka, M., Takaya, D., Kawano, N., Kimberley, M.R., Booker-Milburn, K.I., Stephenson, G.R., Umeyama, H., Ebizuka, Y., Ichinose, K. Bioorg. Med. Chem. (2004) [Pubmed]
WikiGenes - Universities