The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Bacterial Adhesion

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bacterial Adhesion


High impact information on Bacterial Adhesion

  • This and other structural features that we show are conserved in most pneumococcal strains appear to generally play an important role in bacterial adhesion to pIgR [6].
  • CD46 mutants with truncated cytoplasmic tails fail to support bacterial adhesion (Källström et al., 2001), suggesting that this region of the molecule also plays an important role in infection [7].
  • Consistent with these findings, infection studies show that PP2, a specific Src family kinase inhibitor, but not PP3, an inactive variant of this drug, reduces the ability of epithelial cells to support bacterial adhesion [7].
  • This work provides evidence that initial bacterial adhesion and subsequent ability to cause invasive disease is enhanced by pili, long organelles able to extend beyond the polysaccharide capsule, previously unknown to exist in pneumococci [8].
  • On this basis, the observations made at the macroscopic scale by other authors of a strong lability of the bacterial adhesions mediated by Fn under high turbulent flow are rationalized at the molecular level [9].

Chemical compound and disease context of Bacterial Adhesion


Biological context of Bacterial Adhesion


Anatomical context of Bacterial Adhesion


Associations of Bacterial Adhesion with chemical compounds

  • We show in this paper that the fucose-specific lectin P. aeruginosa agglutinin II (PAII) produced by these bacteria can, in addition to facilitating bacterial adhesion, arrest ciliary beating in human airways in vitro [24].
  • Bacterial adhesion was statistically weakest on hydrogel and then on hydrophilic acrylic polymer [25].
  • Platelet receptors for invasin were identified by using a panel of anti-platelet glycoprotein monoclonal antibodies in a bacterial adhesion assay [26].
  • Furthermore, SEM observations highlighted two different patterns of bacterial adhesion (isolated bacteria and clusters of bacteria), assuming that hydrophobic IOLs (silicone and PMMA) probably facilitate bacterial colonization and biofilm production [25].
  • In contrast, inhibition of host cell protein synthesis by cycloheximide did not affect bacterial adhesion and invasion, but prevented intracellular replication although bacterial rRNA content was increased [27].

Gene context of Bacterial Adhesion

  • Whether the FUT1 or possibly the FUT2 gene products are involved in the synthesis of carbohydrate structures responsible for bacterial adhesion remains to be determined [28].
  • We demonstrate that EPEC induces activation of ERK1/2, p38, and JNK cascades, which all depend on bacterial adhesion and expression of the bacterial type III secretion system [29].
  • When PVC pre-exposed to CSF was incubated with antibodies to Vn, subsequent bacterial adhesion of a Vn-binding strain, S. epidermidis 5703, was significantly reduced [30].
  • Some of these correspond to known genes, affecting either bacterial adhesion or colonization (srf-2, srf-3, srf-5) or host swelling response (sur-2, egl-5) [31].
  • Increased bacterial adhesion of the highly quinolone-resistant mutants, which contained combined mutations in grlA and gyrA, was associated with and explained by the overexpression of their fibronectin-binding proteins as assessed by Western ligand affinity blotting [32].

Analytical, diagnostic and therapeutic context of Bacterial Adhesion


  1. Fc-mediated nonspecific binding between fibronectin-binding protein I of Streptococcus pyogenes and human immunoglobulins. Medina, E., Molinari, G., Rohde, M., Haase, B., Chhatwal, G.S., Guzmán, C.A. J. Immunol. (1999) [Pubmed]
  2. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Kukkonen, M., Raunio, T., Virkola, R., Lähteenmäki, K., Mäkelä, P.H., Klemm, P., Clegg, S., Korhonen, T.K. Mol. Microbiol. (1993) [Pubmed]
  3. Limited role of lipopolysaccharide Lewis antigens in adherence of Helicobacter pylori to the human gastric epithelium. Mahdavi, J., Borén, T., Vandenbroucke-Grauls, C., Appelmelk, B.J. Infect. Immun. (2003) [Pubmed]
  4. Povidone-iodine bladder injury in rats and protection with heparin. Chang, S.Y., Gill, W.B., Vermeulen, C.W. J. Urol. (1983) [Pubmed]
  5. Piroxicam treatment of IL-10-deficient mice enhances colonic epithelial apoptosis and mucosal exposure to intestinal bacteria. Hale, L.P., Gottfried, M.R., Swidsinski, A. Inflamm. Bowel Dis. (2005) [Pubmed]
  6. Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. Luo, R., Mann, B., Lewis, W.S., Rowe, A., Heath, R., Stewart, M.L., Hamburger, A.E., Sivakolundu, S., Lacy, E.R., Bjorkman, P.J., Tuomanen, E., Kriwacki, R.W. EMBO J. (2005) [Pubmed]
  7. CD46 is phosphorylated at tyrosine 354 upon infection of epithelial cells by Neisseria gonorrhoeae. Lee, S.W., Bonnah, R.A., Higashi, D.L., Atkinson, J.P., Milgram, S.L., So, M. J. Cell Biol. (2002) [Pubmed]
  8. A pneumococcal pilus influences virulence and host inflammatory responses. Barocchi, M.A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A., Dahlberg, S., Fernebro, J., Moschioni, M., Masignani, V., Hultenby, K., Taddei, A.R., Beiter, K., Wartha, F., von Euler, A., Covacci, A., Holden, D.W., Normark, S., Rappuoli, R., Henriques-Normark, B. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  9. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Bustanji, Y., Arciola, C.R., Conti, M., Mandello, E., Montanaro, L., Samorí, B. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  10. Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. Higashi, J.M., Wang, I.W., Shlaes, D.M., Anderson, J.M., Marchant, R.E. J. Biomed. Mater. Res. (1998) [Pubmed]
  11. Bacterial adhesion of Actinobacillus actinomycetemcomitans serotypes to titanium implants: SEM evaluation. A preliminary report. Okte, E., Sultan, N., Doğan, B., Asikainen, S. J. Periodontol. (1999) [Pubmed]
  12. Heparinised intraocular infusion and bacterial contamination in cataract surgery. Manners, T.D., Turner, D.P., Galloway, P.H., Glenn, A.M. The British journal of ophthalmology. (1997) [Pubmed]
  13. Effects of controlled fibronectin surface orientation on subsequent Staphylococcus epidermidis adhesion. Jarvis, R.A., Bryers, J.D. Journal of biomedical materials research. Part A. (2005) [Pubmed]
  14. Enteropathogenic Escherichia coli infection triggers host phospholipid metabolism perturbations. Wu, Y., Lau, B., Smith, S., Troyan, K., Barnett Foster, D.E. Infect. Immun. (2004) [Pubmed]
  15. Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystyrene by caseinoglycopeptide derivatives. Neeser, J.R., Chambaz, A., Del Vedovo, S., Prigent, M.J., Guggenheim, B. Infect. Immun. (1988) [Pubmed]
  16. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Menozzi, F.D., Mutombo, R., Renauld, G., Gantiez, C., Hannah, J.H., Leininger, E., Brennan, M.J., Locht, C. Infect. Immun. (1994) [Pubmed]
  17. A comparison of the use of an ATP-based bioluminescent assay and image analysis for the assessment of bacterial adhesion to standard HEMA and biomimetic soft contact lenses. Andrews, C.S., Denyer, S.P., Hall, B., Hanlon, G.W., Lloyd, A.W. Biomaterials (2001) [Pubmed]
  18. Interaction of mutants of Xenorhabdus nematophilus (Enterobacteriaceae) with antibacterial systems of Galleria mellonella larvae (Insecta: Pyralidae). Dunphy, G.B. Can. J. Microbiol. (1994) [Pubmed]
  19. Activity of levofloxacin and ciprofloxacin against urinary pathogens. Drago, L., De Vecchi, E., Mombelli, B., Nicola, L., Valli, M., Gismondo, M.R. J. Antimicrob. Chemother. (2001) [Pubmed]
  20. Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. Weerkamp, A.H., Uyen, H.M., Busscher, H.J. J. Dent. Res. (1988) [Pubmed]
  21. A new model to assess staphylococcal adhesion to intraocular lenses under in vitro flow conditions. Lundberg, F., Gouda, I., Larm, O., Galin, M.A., Ljungh, A. Biomaterials (1998) [Pubmed]
  22. Inhibition of adhesion of S-fimbriated Escherichia coli to epithelial cells by meconium and feces of breast-fed and formula-fed newborns: mucins are the major inhibitory component. Schroten, H., Lethen, A., Hanisch, F.G., Plogmann, R., Hacker, J., Nobis-Bosch, R., Wahn, V. J. Pediatr. Gastroenterol. Nutr. (1992) [Pubmed]
  23. Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. Cerquetti, M., Serafino, A., Sebastianelli, A., Mastrantonio, P. FEMS Immunol. Med. Microbiol. (2002) [Pubmed]
  24. Pseudomonas aeruginosa II lectin stops human ciliary beating: therapeutic implications of fucose. Adam, E.C., Mitchell, B.S., Schumacher, D.U., Grant, G., Schumacher, U. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  25. Bacterial adherence of Staphylococcus epidermidis to intraocular lenses: a bioluminescence and scanning electron microscopy study. Kodjikian, L., Burillon, C., Roques, C., Pellon, G., Freney, J., Renaud, F.N. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  26. Human platelet aggregation by Yersinia pseudotuberculosis is mediated by invasin. Simonet, M., Triadou, P., Frehel, C., Morel-Kopp, M.C., Kaplan, C., Berche, P. Infect. Immun. (1992) [Pubmed]
  27. Interaction of Bartonella henselae with endothelial cells results in rapid bacterial rRNA synthesis and replication. Kempf, V.A., Schaller, M., Behrendt, S., Volkmann, B., Aepfelbacher, M., Cakman, I., Autenrieth, I.B. Cell. Microbiol. (2000) [Pubmed]
  28. Two alpha(1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Meijerink, E., Fries, R., Vögeli, P., Masabanda, J., Wigger, G., Stricker, C., Neuenschwander, S., Bertschinger, H.U., Stranzinger, G. Mamm. Genome (1997) [Pubmed]
  29. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Czerucka, D., Dahan, S., Mograbi, B., Rossi, B., Rampal, P. Infect. Immun. (2001) [Pubmed]
  30. Vitronectin may mediate staphylococcal adhesion to polymer surfaces in perfusing human cerebrospinal fluid. Lundberg, F., Schliamser, S., Ljungh, A. J. Med. Microbiol. (1997) [Pubmed]
  31. Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Gravato-Nobre, M.J., Nicholas, H.R., Nijland, R., O'Rourke, D., Whittington, D.E., Yook, K.J., Hodgkin, J. Genetics (2005) [Pubmed]
  32. Increased expression of fibronectin-binding proteins by fluoroquinolone-resistant Staphylococcus aureus exposed to subinhibitory levels of ciprofloxacin. Bisognano, C., Vaudaux, P.E., Lew, D.P., Ng, E.Y., Hooper, D.C. Antimicrob. Agents Chemother. (1997) [Pubmed]
  33. Distinct binding properties of eaeA-negative verocytotoxin-producing Escherichia coli of serotype O113:H21. Dytoc, M.T., Ismaili, A., Philpott, D.J., Soni, R., Brunton, J.L., Sherman, P.M. Infect. Immun. (1994) [Pubmed]
  34. Alpha-actinin accumulation in epithelial cells infected with attaching and effacing gastrointestinal pathogens. Ismaili, A., Philpott, D.J., Dytoc, M.T., Soni, R., Ratnam, S., Sherman, P.M. J. Infect. Dis. (1995) [Pubmed]
  35. Optimisation of polymeric surface pre-treatment to prevent bacterial biofilm formation for use in microfluidics. Davidson, C.A., Lowe, C.R. J. Mol. Recognit. (2004) [Pubmed]
  36. Reduced bacterial adhesion to heparin-surface-modified intraocular lenses. Portolés, M., Refojo, M.F., Leong, F.L. Journal of cataract and refractive surgery. (1993) [Pubmed]
  37. Interaction forces between colloids and protein-coated surfaces measured using an atomic force microscope. Xu, L.C., Logan, B.E. Environ. Sci. Technol. (2005) [Pubmed]
WikiGenes - Universities