The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Bmi1  -  Bmi1 polycomb ring finger oncogene

Mus musculus

Synonyms: AW546694, Bmi-1, Pcgf4, Polycomb complex protein BMI-1, Polycomb group RING finger protein 4
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bmi1


High impact information on Bmi1

  • To identify new immortalizing genes with potential roles in tumorigenesis, we performed a genetic screen aimed to bypass the rapid and tight senescence arrest of primary fibroblasts deficient for the oncogene Bmi1 [7].
  • Most importantly, we provide evidence that the proliferative potential of leukaemic stem and progenitor cells lacking Bmi-1 is compromised because they eventually undergo proliferation arrest and show signs of differentiation and apoptosis, leading to transplant failure of the leukaemia [8].
  • A gene expression analysis revealed that the expression of stem cell associated genes, cell survival genes, transcription factors, and genes modulating proliferation including p16Ink4a and p19Arf was altered in bone marrow cells of the Bmi-1-/- mice [9].
  • Transplanted fetal liver and bone marrow cells obtained from Bmi-1-/- mice were able to contribute only transiently to haematopoiesis [9].
  • We found that adult and fetal mouse and adult human HSCs express the proto-oncogene Bmi-1 [9].

Biological context of Bmi1


Anatomical context of Bmi1

  • Beyond axial patterning, Bmi1 is also involved in hemopoiesis because a loss-of-function allele causes a profound decrease in bone marrow progenitor cells [10].
  • However, the genetic interaction between the two genes is cell-type specific as the presence of one or two mutant alleles of eed trans-complements the Bmi1-deficiency in pre-B bone marrow cells [10].
  • We used a genetic approach to investigate whether Ink4a or Arf is more critical for relaying Bmi1 function in lymphoid cells, neural progenitors, and neural stem cells [11].
  • Transcriptional coactivator Cited2 induces Bmi1 and Mel18 and controls fibroblast proliferation via Ink4a/ARF [1].
  • BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice [14].

Associations of Bmi1 with chemical compounds


Physical interactions of Bmi1

  • Co-immunoprecipitations and subnuclear co-localization studies show that MPc2 interacts with the mouse polycomb-group oncoprotein Bmi1 and is a new member of the mouse polycomb multiprotein complex [16].
  • The Bmi-1 oncoprotein interacts with dinG and MPh2: the role of RING finger domains [17].

Regulatory relationships of Bmi1


Other interactions of Bmi1

  • We found that Cited2(-/-) fibroblasts had reduced expression of the polycomb-group genes Bmi1 and Mel18, which function as INK4a/ARF and Hox repressors [1].
  • This has yielded a series of oncogenes that could be assigned to different complementation groups in transformation: the myc, Pim, Bmi1, and Frat1 complementation groups [18].
  • Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice [11].
  • These studies thus suggest that hemopoietic cell proliferation is regulated by the relative contribution of repressive (Eed-containing) and enhancing (Bmi1-containing) PcG gene complexes [10].
  • Here we demonstrate that down-regulation of ink4a-ARF by Bmi-1 underlies its ability to cooperate with Myc in tumorigenesis [19].

Analytical, diagnostic and therapeutic context of Bmi1


  1. Transcriptional coactivator Cited2 induces Bmi1 and Mel18 and controls fibroblast proliferation via Ink4a/ARF. Kranc, K.R., Bamforth, S.D., Bragança, J., Norbury, C., van Lohuizen, M., Bhattacharya, S. Mol. Cell. Biol. (2003) [Pubmed]
  2. Pertubation of B and T cell development and predisposition to lymphomagenesis in Emu Bmi1 transgenic mice require the Bmi1 RING finger. Alkema, M.J., Jacobs, H., van Lohuizen, M., Berns, A. Oncogene (1997) [Pubmed]
  3. Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. Zencak, D., Lingbeek, M., Kostic, C., Tekaya, M., Tanger, E., Hornfeld, D., Jaquet, M., Munier, F.L., Schorderet, D.F., van Lohuizen, M., Arsenijevic, Y. J. Neurosci. (2005) [Pubmed]
  4. Of mice, flies, and man: the emerging role of polycomb-group genes in human malignant lymphomas. Raaphorst, F.M. Int. J. Hematol. (2005) [Pubmed]
  5. BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nowak, K., Kerl, K., Fehr, D., Kramps, C., Gessner, C., Killmer, K., Samans, B., Berwanger, B., Christiansen, H., Lutz, W. Nucleic Acids Res. (2006) [Pubmed]
  6. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Pietersen, A.M., Evers, B., Prasad, A.A., Tanger, E., Cornelissen-Steijger, P., Jonkers, J., van Lohuizen, M. Curr. Biol. (2008) [Pubmed]
  7. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Jacobs, J.J., Keblusek, P., Robanus-Maandag, E., Kristel, P., Lingbeek, M., Nederlof, P.M., van Welsem, T., van de Vijver, M.J., Koh, E.Y., Daley, G.Q., van Lohuizen, M. Nat. Genet. (2000) [Pubmed]
  8. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Lessard, J., Sauvageau, G. Nature (2003) [Pubmed]
  9. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Park, I.K., Qian, D., Kiel, M., Becker, M.W., Pihalja, M., Weissman, I.L., Morrison, S.J., Clarke, M.F. Nature (2003) [Pubmed]
  10. Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. Lessard, J., Schumacher, A., Thorsteinsdottir, U., van Lohuizen, M., Magnuson, T., Sauvageau, G. Genes Dev. (1999) [Pubmed]
  11. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Bruggeman, S.W., Valk-Lingbeek, M.E., van der Stoop, P.P., Jacobs, J.J., Kieboom, K., Tanger, E., Hulsman, D., Leung, C., Arsenijevic, Y., Marino, S., van Lohuizen, M. Genes Dev. (2005) [Pubmed]
  12. Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. Oguro, H., Iwama, A., Morita, Y., Kamijo, T., van Lohuizen, M., Nakauchi, H. J. Exp. Med. (2006) [Pubmed]
  13. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. Buchwald, G., van der Stoop, P., Weichenrieder, O., Perrakis, A., van Lohuizen, M., Sixma, T.K. EMBO J. (2006) [Pubmed]
  14. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice. Zencak, D., Crippa, S.V., Tekaya, M., Tanger, E., Schorderet, D.E., Munier, F.L., van Lohuizen, M., Arsenijevic, Y. Adv. Exp. Med. Biol. (2006) [Pubmed]
  15. Construction of antisense Bmi-1 expression plasmid and its inhibitory effect on K562 cells proliferation. Meng, X.X., Liu, W.H., Liu, D.D., Zhao, X.Y., Su, B.L. Chin. Med. J. (2005) [Pubmed]
  16. MPc2, a new murine homolog of the Drosophila polycomb protein is a member of the mouse polycomb transcriptional repressor complex. Alkema, M.J., Jacobs, J., Voncken, J.W., Jenkins, N.A., Copeland, N.G., Satijn, D.P., Otte, A.P., Berns, A., van Lohuizen, M. J. Mol. Biol. (1997) [Pubmed]
  17. The Bmi-1 oncoprotein interacts with dinG and MPh2: the role of RING finger domains. Hemenway, C.S., Halligan, B.W., Levy, L.S. Oncogene (1998) [Pubmed]
  18. Identification and characterization of collaborating oncogenes in compound mutant mice. Berns, A., Mikkers, H., Krimpenfort, P., Allen, J., Scheijen, B., Jonkers, J. Cancer Res. (1999) [Pubmed]
  19. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Jacobs, J.J., Scheijen, B., Voncken, J.W., Kieboom, K., Berns, A., van Lohuizen, M. Genes Dev. (1999) [Pubmed]
  20. Hepatic differentiation and transcriptional profile of the mouse liver epithelial progenitor cells (LEPCs) under the induction of sodium butyrate. Li, W., You, P., Wei, Q., Li, Y., Fu, X., Ding, X., Wang, X., Hu, Y. Front. Biosci. (2007) [Pubmed]
  21. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Cao, R., Tsukada, Y., Zhang, Y. Mol. Cell (2005) [Pubmed]
  22. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Liu, S., Dontu, G., Mantle, I.D., Patel, S., Ahn, N.S., Jackson, K.W., Suri, P., Wicha, M.S. Cancer Res. (2006) [Pubmed]
  23. Implication of Polycomb Members Bmi-1, Mel-18, and Hpc-2 in the Regulation of p16INK4a, p14ARF, h-TERT, and c-Myc Expression in Primary Breast Carcinomas. Silva, J., Garc??a, J.M., Pe??a, C., Garc??a, V., Dom??nguez, G., Su??rez, D., Camacho, F.I., Espinosa, R., Provencio, M., Espa??a, P., Bonilla, F. Clin. Cancer Res. (2006) [Pubmed]
  24. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. van der Lugt, N.M., Alkema, M., Berns, A., Deschamps, J. Mech. Dev. (1996) [Pubmed]
WikiGenes - Universities