The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Hbb-b1  -  hemoglobin, beta adult major chain

Mus musculus

Synonyms: AA409645, Beta-1-globin, Hbb1, Hbbt1, Hbbt2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hbb-b1

 

High impact information on Hbb-b1

  • SV40 recombinants carrying a functional RNA splice junction and polyadenylation site from the chromosomal mouse beta maj globin gene [6].
  • A novel procedure for saturation mutagenesis of cloned DNA was used to obtain more than 100 single base substitutions within the promoter of the mouse beta-major globin gene [7].
  • The third, cell-specific protein GT-IC exhibited a high affinity for both the GT-I motif and an upstream element in the promoter of the mouse beta-major-globin gene, suggesting that this protein can act both as an enhancer and an upstream element trans-acting factor [8].
  • When the promoter regions from the mouse beta-maj globin or the human epsilon-globin genes are substituted for the viral promoter in the tk gene transformation occurs with 10-20% of the efficiency of the original plasmid [9].
  • The possible regulatory role of DNA sequences situated 5' to the beta-maj globin gene was investigated by two types of assay [9].
 

Chemical compound and disease context of Hbb-b1

 

Biological context of Hbb-b1

 

Anatomical context of Hbb-b1

  • We have analyzed the chromatin structure of the beta-major globin gene and other related beta-globin genes in induced and uninduced murine erythroleukemia (MEL) cell nuclei [17].
  • The time of replication in S phase was determined for the 7.3 kb EcoRI segment containing the beta-major globin gene and the 14 kb EcoRI segment containing the beta-minor globin gene in a murine Friend erythroleukemia virus transformed (MEL) cell line [18].
  • In the splenic erythroblasts, the chromatin structure in the vicinity of the beta-major globin gene was analyzed with two nucleases during these transcription rate changes [19].
  • It is demonstrated that commitment and the actual expression of differentiation, as measured by the accumulation of alpha-, beta maj-, and beta min-globin mRNA, are temporally coordinated functions during induced differentiation of a transformed cell line by exposure to polar/apolar agents [20].
  • RNA species have been identified in murine erythroid cells which contain both 5' flanking and structural gene sequences from the beta maj globin gene [21].
 

Associations of Hbb-b1 with chemical compounds

 

Physical interactions of Hbb-b1

 

Regulatory relationships of Hbb-b1

 

Other interactions of Hbb-b1

  • An extra band. distinct from the well-characterized globin chains (alpha, beta-maj, beta-min, beta-s), was detected in an adult erythrocyte sample of the C3H strain by urea triton polyacrylamide gel electrophoresis (UT-PAGE) analysis [30].
  • Transcription of the erythroid-specific genes, alpha 1 and beta maj globin, is increased 10- to 30-fold, whereas synthesis of rRNA is suppressed, and there is activation or suppression of a number of additional genes that remain to be characterized [31].
  • Analysis of the degree of Epo-dependent differentiation of the transfectants, based on the steady-state levels of beta major-globin mRNA, showed that the carboxyl terminal 133 amino acids and tyrosyl residues located at positions 429/431 and 460/464 were not necessary for the induction of differentiation [32].
  • Spontaneous differentiation to the myeloid-macrophage, erythroid, or lymphoid pathway can be seen by morphologic criteria, detection of beta major globin synthesis, or expression of the early lymphoid specific transcription factor, Ikaros [33].
  • Recombinant adenoviruses were constructed in which the viral E1A gene was deleted and the E1B promoter was replaced by the rat albumin, mouse beta-major globin, or mouse immunoglobulin heavy-chain promoter [34].
 

Analytical, diagnostic and therapeutic context of Hbb-b1

References

  1. Regulation of murine alpha-, beta major-, and beta minor-globin gene expression. Weich, N., Marks, P.A., Rifkind, R.A. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  2. Compensatory increase in levels of beta minor globin in murine beta-thalassemia is under translational control. Curcio, M.J., Kantoff, P., Schafer, M.P., Anderson, W.F., Safer, B. J. Biol. Chem. (1986) [Pubmed]
  3. Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. Ciavatta, D.J., Ryan, T.M., Farmer, S.C., Townes, T.M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  4. Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse beta-major globin terminator element. Falck-Pedersen, E., Logan, J., Shenk, T., Darnell, J.E. Cell (1985) [Pubmed]
  5. Promoter dependence of enhancer activity. Berg, P.E., Popovic, Z., Anderson, W.F. Mol. Cell. Biol. (1984) [Pubmed]
  6. SV40 recombinants carrying a functional RNA splice junction and polyadenylation site from the chromosomal mouse beta maj globin gene. Hamer, D.H., Leder, P. Cell (1979) [Pubmed]
  7. Fine structure genetic analysis of a beta-globin promoter. Myers, R.M., Tilly, K., Maniatis, T. Science (1986) [Pubmed]
  8. In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer. Xiao, J.H., Davidson, I., Macchi, M., Rosales, R., Vigneron, M., Staub, A., Chambon, P. Genes Dev. (1987) [Pubmed]
  9. A negative regulatory sequence near the mouse beta-maj globin gene associated with a region of potential Z-DNA. Gilmour, R.S., Spandidos, D.A., Vass, J.K., Gow, J.W., Paul, J. EMBO J. (1984) [Pubmed]
  10. The effect of dexamethasone on the initiation of beta-globin gene transcription in differentiating Friend cells. Mierendorf, R.C., Mueller, G.C. J. Biol. Chem. (1982) [Pubmed]
  11. Prolactin-like protein-f subfamily of placental hormones/cytokines: responsiveness to maternal hypoxia. Ho-Chen, J.K., Bustamante, J.J., Soares, M.J. Endocrinology (2007) [Pubmed]
  12. Nucleotide sequences of the mouse globin beta gene cDNAs in a wild derived new haplotype Hbb(w1). Ueda, Y., Miyashita, N., Imai, K., Yamaguchi, Y., Takamura, K., Notohara, M., Shiroishi, T., Kawashima, T., Ning, L., Wang, C., Wu, X., Moriwaki, K. Mamm. Genome (1999) [Pubmed]
  13. Expression profiling and gene discovery in the mouse lens. Wride, M.A., Mansergh, F.C., Adams, S., Everitt, R., Minnema, S.E., Rancourt, D.E., Evans, M.J. Mol. Vis. (2003) [Pubmed]
  14. The molecular characterization of an A:T to G:C transition in the Hbb-b1 gene of the murine homologue of hemoglobin Rainier. Jones, J., Peters, J. Biochem. Genet. (1991) [Pubmed]
  15. High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia. Fabry, M.E., Costantini, F., Pachnis, A., Suzuka, S.M., Bank, N., Aynedjian, H.S., Factor, S.M., Nagel, R.L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  16. A 66-base pair insert bridges the deletion responsible for a mouse model of beta-thalassemia. Goldberg, S.Z., Kuebbing, D., Trauber, D., Schafer, M.P., Lewis, S.E., Popp, R.A., Anderson, W.F. J. Biol. Chem. (1986) [Pubmed]
  17. Chromatin structure of the beta-globin gene family in murine erythroleukemia cells. Smith, R.D., Yu, J., Seale, R.L. Biochemistry (1984) [Pubmed]
  18. The beta-major and beta-minor globin genes in murine erythroleukemia cells replicate during the same early interval of the S phase. Braunstein, J.D., Schildkraut, C.L. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  19. Control of globin gene transcription by erythropoietin in erythroblasts from friend virus-infected mice. Bondurant, M.C., Lind, R.N., Koury, M.J., Ferguson, M.E. Mol. Cell. Biol. (1985) [Pubmed]
  20. Relationship between globin mRNA accumulation and commitment to terminal cell differentiation in inducer sensitive and resistant erythroleukemia variants. Weich, N., Marks, P.A., Rifkind, R.A. Blood (1990) [Pubmed]
  21. RNA processing of beta-globin transcripts containing 5' flanking and structural gene sequences. Winicov, I. Nucleic Acids Res. (1988) [Pubmed]
  22. Variable globin chain synthesis in mouse erythroleukemia cells. Alter, B.P., Goff, S.C. Blood (1978) [Pubmed]
  23. Absolute rates of globin gene transcription and mRNA formation during differentiation of cultured mouse erythroleukemia cells. Ganguly, S., Skoultchi, A.I. J. Biol. Chem. (1985) [Pubmed]
  24. Hexamethylenebisacetamide-mediated induction of murine erythroleukemia cells: relationship between expression of beta major and beta minor globin genes, globin mRNA synthesis and commitment to erythroid differentiation. Gambari, R. Biochem. Int. (1983) [Pubmed]
  25. A normal beta-globin allele as a modifier gene ameliorating the severity of alpha-thalassemia in mice. Leder, A., Wiener, E., Lee, M.J., Wickramasinghe, S.N., Leder, P. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  26. Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Razin, A., Webb, C., Szyf, M., Yisraeli, J., Rosenthal, A., Naveh-Many, T., Sciaky-Gallili, N., Cedar, H. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  27. Erythroid differentiation of mouse erythroleukemia cells results in reorganization of protein-DNA complexes in the mouse beta maj globin promoter but not its distal enhancer. Reddy, P.M., Shen, C.K. Mol. Cell. Biol. (1993) [Pubmed]
  28. Chromatin-binding in vivo of the erythroid kruppel-like factor, EKLF, in the murine globin loci. Shyu, Y.C., Wen, S.C., Lee, T.L., Chen, X., Hsu, C.T., Chen, H., Chen, R.L., Hwang, J.L., Shen, C.K. Cell Res. (2006) [Pubmed]
  29. Induction of erythroid proliferation and differentiation by a trophoblast-specific cytokine involves activation of the JAK/STAT pathway. Bittorf, T., Jaster, R., Soares, M.J., Seiler, J., Brock, J., Friese, K., Müller, H. J. Mol. Endocrinol. (2000) [Pubmed]
  30. A C3H strain-specific allele (alpha va126) of the murine alpha-globin gene newly detected by UT-PAGE and RT-PCR-SSCP analysis. Sato, H., Nagayoshi, M., Ikawa, Y., Kato, M.V. Mutat. Res. (1996) [Pubmed]
  31. Induced erythroleukemia differentiation: cellular and molecular aspects. Rifkind, R.A., Sheffery, M., Marks, P.A. Blood Cells (1987) [Pubmed]
  32. Characterization of the domains of the erythropoietin receptor necessary for induction of cell growth and differentiation. Ishiguro, K., Sartorelli, A.C. Cytokine (1998) [Pubmed]
  33. A novel hematopoietic multilineage clone, Myl-D-7, is stromal cell-dependent and supported by an alternative mechanism(s) independent of stem cell factor/c-kit interaction. Itoh, K., Friel, J., Kluge, N., Kina, T., Kondo-Takaori, A., Kawamata, S., Uchiyama, T., Ostertag, W. Blood (1996) [Pubmed]
  34. Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression. Friedman, J.M., Babiss, L.E., Clayton, D.F., Darnell, J.E. Mol. Cell. Biol. (1986) [Pubmed]
  35. Tracking of mouse cell lineage using microinjected DNA sequences: analyses using genomic Southern blotting and tissue-section in situ hybridizations. Lo, C.W., Coulling, M., Kirby, C. Differentiation (1987) [Pubmed]
  36. A quantitative test for developmental neutrality of a transgenic lineage marker in mouse chimaeras. West, J.D., Keighren, M.A., Flockhart, J.H. Genet. Res. (1996) [Pubmed]
  37. Introduction of human erythropoietin receptor complementary DNA by retrovirus-mediated gene transfer into murine embryonic stem cells enhances erythropoiesis in developing embryoid bodies. Dai, M.S., Ge, Y., Xia, Z.B., Broxmeyer, H.E., Lu, L. Biol. Blood Marrow Transplant. (2000) [Pubmed]
  38. Exclusion of beta-thalassaemia by biopsy and DNA amplification in mouse pre-embryos. Lindeman, R., Lutjen, J., O'Neill, C., Trent, R.J. Prenat. Diagn. (1990) [Pubmed]
 
WikiGenes - Universities