The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

GALNT3  -  polypeptide N-acetylgalactosaminyltransfer...

Homo sapiens

Synonyms: GalNAc-T3, HFTC, HHS, Polypeptide GalNAc transferase 3, Polypeptide N-acetylgalactosaminyltransferase 3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of GALNT3


High impact information on GALNT3


Biological context of GALNT3

  • The genomic organizations of GALNT3 and GALNT6 are identical with the coding regions placed in 10 exons, but the genes are localized differently at 2q31 and 12q13, respectively [7].
  • Acceptor substrate specificities of GalNAc-T3 and -T6 were similar and different from other GalNAc-transferases [7].
  • GalNAc-T6 exhibited high sequence similarity to GalNAc-T3 throughout the coding region, in contrast to the limited similarity that exists between homologous glycosyltransferase genes, which is usually restricted to the putative catalytic domain [7].
  • Decreasing the expression of the GALNT3 gene by RNA interference resulted in enhanced processing of FGF23 [8].
  • Conclusions: Our findings demonstrate that GALNT3 inactivation in patients with TC leads to inadequate production of biologically active FGF23 as the most likely cause of the hyperphosphatemic phenotype [9].

Anatomical context of GALNT3

  • GalNAc-T3 was distributed throughout the entire ocular surface epithelium, whereas GalNAc-T1 was found in scattered cells in conjunctiva only [10].
  • For example, GalNAc-T1 and -T2 but not -T3 were highly expressed in WI38 cells, and GalNAc-T3 but not GalNAc-T1 or -T2 was expressed in spermatozoa [11].
  • CONCLUSIONS: The high testicular expression of GALNT3 suggests that the gene alteration could act locally by causing deposition of calcium, and the testis may be an underestimated site of calcification in FTC [12].
  • Postsurgical survival was significantly poorer in cases showing diffuse-type localization than in those showing granular-type localization (P = 0.033) CONCLUSIONS: In pT(2) gallbladder carcinoma, the presence of diffuse-type localization of GalNAc-T3 in the subserosal layer is correlated with aggressiveness of the disease [4].
  • We found that normal bronchial epithelial cells, bronchial gland cells, and alveolar pneumocytes showed cytoplasmic immunostaining for GalNAc-T3 [13].

Associations of GALNT3 with chemical compounds


Enzymatic interactions of GALNT3


Regulatory relationships of GALNT3

  • OBJECTIVE: UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyl transferase-3 (GalNAc-T3) regulates the initial glycosylation of mucin-type O-linked proteins [15].

Other interactions of GALNT3

  • HFTC was shown recently to result from mutations in two genes: GALNT3, coding for a glycosyltransferase responsible for initiating O-glycosylation, and FGF23, coding for a potent phosphaturic protein [16].
  • Hence, it is unlikely that the GALNT3 is an IDDM susceptibility gene [2].
  • GALNT3 that encodes the UDP-GalNAc: polypeptide N-acetyl-galactosaminyltransferase-T3 (GalNAc-T3), was recently identified and mapped to a region 5-25 cM from D2S152 [2].
  • Moreover, tumours losing GalNAc-T3 expression had a significantly higher Ki-67 labelling index than tumours retaining GalNAc-T3 expression (P=0.0003) [13].
  • Transient transfection of plasmids containing a reporter gene under the control of GalNAc-T3 indicated that several transcriptional elements are involved in response to sodium butyrate, with the nuclear respiratory factor-1 (NRF-1)-binding motif located between -88 and -77nt being the most important [17].

Analytical, diagnostic and therapeutic context of GALNT3


  1. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Topaz, O., Shurman, D.L., Bergman, R., Indelman, M., Ratajczak, P., Mizrachi, M., Khamaysi, Z., Behar, D., Petronius, D., Friedman, V., Zelikovic, I., Raimer, S., Metzker, A., Richard, G., Sprecher, E. Nat. Genet. (2004) [Pubmed]
  2. IDDM7 links to insulin-dependent diabetes mellitus in Danish multiplex families but linkage is not explained by novel polymorphisms in the candidate gene GALNT3. The Danish Study Group of Diabetes in Childhood and The Danish IDDM Epidemiology and Genetics Group. Kristiansen, O.P., Pociot, F., Bennett, E.P., Clausen, H., Johannesen, J., Nerup, J., Mandrup-Poulsen, T. Hum. Mutat. (2000) [Pubmed]
  3. Expression of three UDP-N-acetyl-alpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Sutherlin, M.E., Nishimori, I., Caffrey, T., Bennett, E.P., Hassan, H., Mandel, U., Mack, D., Iwamura, T., Clausen, H., Hollingsworth, M.A. Cancer Res. (1997) [Pubmed]
  4. Expression of UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase isozyme 3 in the subserosal layer correlates with postsurgical survival of pathological tumor stage 2 carcinoma of the gallbladder. Miyahara, N., Shoda, J., Kawamoto, T., Furukawa, M., Ueda, T., Todoroki, T., Tanaka, N., Matsuo, K., Yamada, Y., Kohno, K., Irimura, T. Clin. Cancer Res. (2004) [Pubmed]
  5. Low expression of polypeptide GalNAc N-acetylgalactosaminyl transferase-3 in lung adenocarcinoma: impact on poor prognosis and early recurrence. Gu, C., Oyama, T., Osaki, T., Li, J., Takenoyama, M., Izumi, H., Sugio, K., Kohno, K., Yasumoto, K. Br. J. Cancer (2004) [Pubmed]
  6. A Deleterious Mutation in SAMD9 Causes Normophosphatemic Familial Tumoral Calcinosis. Topaz, O., Indelman, M., Chefetz, I., Geiger, D., Metzker, A., Altschuler, Y., Choder, M., Bercovich, D., Uitto, J., Bergman, R., Richard, G., Sprecher, E. Am. J. Hum. Genet. (2006) [Pubmed]
  7. Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. Bennett, E.P., Hassan, H., Mandel, U., Hollingsworth, M.A., Akisawa, N., Ikematsu, Y., Merkx, G., van Kessel, A.G., Olofsson, S., Clausen, H. J. Biol. Chem. (1999) [Pubmed]
  8. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of o-glycosylation associated with augmented processing of fibroblast growth factor 23. Frishberg, Y., Ito, N., Rinat, C., Yamazaki, Y., Feinstein, S., Urakawa, I., Navon-Elkan, P., Becker-Cohen, R., Yamashita, T., Araya, K., Igarashi, T., Fujita, T., Fukumoto, S. J. Bone Miner. Res. (2007) [Pubmed]
  9. The Role of Mutant UDP-N-Acetyl-{alpha}-D-Galactosamine-Polypeptide N-Acetylgalactosaminyltransferase 3 in Regulating Serum Intact Fibroblast Growth Factor 23 and Matrix Extracellular Phosphoglycoprotein in Heritable Tumoral Calcinosis. Garringer, H.J., Fisher, C., Larsson, T.E., Davis, S.I., Koller, D.L., Cullen, M.J., Draman, M.S., Conlon, N., Jain, A., Fedarko, N.S., Dasgupta, B., White, K.E. J. Clin. Endocrinol. Metab. (2006) [Pubmed]
  10. The cell-layer- and cell-type-specific distribution of GalNAc-transferases in the ocular surface epithelia is altered during keratinization. Argüeso, P., Tisdale, A., Mandel, U., Letko, E., Foster, C.S., Gipson, I.K. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  11. Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. Mandel, U., Hassan, H., Therkildsen, M.H., Rygaard, J., Jakobsen, M.H., Juhl, B.R., Dabelsteen, E., Clausen, H. Glycobiology (1999) [Pubmed]
  12. Familial tumoral calcinosis and testicular microlithiasis associated with a new mutation of GALNT3 in a white family. Campagnoli, M.F., Pucci, A., Garelli, E., Carando, A., Defilippi, C., Lala, R., Ingrosso, G., Dianzani, I., Forni, M., Ramenghi, U. J. Clin. Pathol. (2006) [Pubmed]
  13. N-acetylgalactosaminyl transferase-3 is a potential new marker for non-small cell lung cancers. Dosaka-Akita, H., Kinoshita, I., Yamazaki, K., Izumi, H., Itoh, T., Katoh, H., Nishimura, M., Matsuo, K., Yamada, Y., Kohno, K. Br. J. Cancer (2002) [Pubmed]
  14. cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. Bennett, E.P., Hassan, H., Clausen, H. J. Biol. Chem. (1996) [Pubmed]
  15. The expression pattern of UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetyl-galactosaminyl transferase-3 in squamous cell carcinoma of the esophagus. Ishikawa, M., Kitayama, J., Kohno, K., Nagawa, H. Pathobiology (2005) [Pubmed]
  16. Hyperphosphatemic familial tumoral calcinosis caused by a mutation in GALNT3 in a European kindred. Specktor, P., Cooper, J.G., Indelman, M., Sprecher, E. J. Hum. Genet. (2006) [Pubmed]
  17. p300/CBP-associated factor (P/CAF) interacts with nuclear respiratory factor-1 to regulate the UDP-N-acetyl-alpha-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-3 gene. Izumi, H., Ohta, R., Nagatani, G., Ise, T., Nakayama, Y., Nomoto, M., Kohno, K. Biochem. J. (2003) [Pubmed]
  18. Tumoral Calcinosis Presenting with Eyelid Calcifications due to Novel Missense Mutations in the Glycosyl Transferase Domain of the GALNT3 Gene. Ichikawa, S., Imel, E.A., Sorenson, A.H., Severe, R., Knudson, P., Harris, G.J., Shaker, J.L., Econs, M.J. J. Clin. Endocrinol. Metab. (2006) [Pubmed]
  19. The expression pattern of UDP-N-acetyl-alpha-d-galactosamine: polypeptide N-acetylgalactosaminyl transferase-3 in early gastric carcinoma. Ishikawa, M., Kitayama, J., Nariko, H., Kohno, K., Nagawa, H. Journal of surgical oncology. (2004) [Pubmed]
  20. Use of multiple biomarkers for a molecular diagnosis of prostate cancer. Landers, K.A., Burger, M.J., Tebay, M.A., Purdie, D.M., Scells, B., Samaratunga, H., Lavin, M.F., Gardiner, R.A. Int. J. Cancer (2005) [Pubmed]
WikiGenes - Universities