The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GBGT1  -  globoside alpha-1,3-N-acetylgalactosaminyl...

Homo sapiens

Synonyms: A3GALNT, FS, Forssman glycolipid synthase-like protein, Globoside alpha-1,3-N-acetylgalactosaminyltransferase 1, MGC44848, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GBGT1

 

High impact information on GBGT1

  • Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant [6].
  • When ldlD cells are grown in glucose-based media, they cannot synthesize enough UDP-galactose and UDP-GalNAc to allow normal synthesis of glycolipids and glycoproteins [6].
  • The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens [7].
  • Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity [7].
  • The conformation with the highest occupancy opens up the active site to accommodate the larger A-specific donor, UDP-GalNAc, accounting for the dual specificity [8].
 

Chemical compound and disease context of GBGT1

 

Biological context of GBGT1

 

Anatomical context of GBGT1

 

Associations of GBGT1 with chemical compounds

  • Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined [7].
  • These studies have revealed that, indeed, this simple mutation did confer UDP-GalNAc/UDP-GlcNAc converting activity to the bacterial enzyme with minimal changes in its three-dimensional structure [2].
  • This study revealed that the enzyme binds several UDP-activated sugars, including UDP-Glc, UDP-GlcNAc, and UDP-GalNAc [22].
  • Identification and modification of the uridine-binding site of the UDP-GalNAc (GlcNAc) pyrophosphorylase [23].
  • In addition, a ganglioside with identical chromatographic mobility can be obtained by the enzymatic transfer of GalNAc from UDP-GalNAc to sialosylparagloboside using a microsomal preparation from human kidney [24].
 

Enzymatic interactions of GBGT1

 

Other interactions of GBGT1

 

Analytical, diagnostic and therapeutic context of GBGT1

  • Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation [7].
  • Before and after iv insulin treatment, insulin sensitivity was measured using a hyperinsulinemic euglycemic clamp, and a muscle biopsy was taken for measurement of UDP-GlcNAc, UDP-GalNAc, UDP-glucose, and UDP-galactose levels [3].
  • The incubation products of these glycopeptides, microsome fractions of LS174T cells, and UDP-GalNAc were fractionated by reverse-phase HPLC and their structures were determined using MALDI-TOF MS and peptide sequencing [32].
  • Highly significant alterations of phospholipid metabolite concentrations and UDP-hexoses (primarily UDP-GlcNAc and UDP-GalNAc) were observed as a function of the precursor concentrations, culture time or perfusion time [33].
  • We isolated a rat cDNA clone and its human orthologue, which are most homologous to UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase 9, by homology-based PCR from brain [34].

References

  1. High density O-glycosylation of the MUC2 tandem repeat unit by N-acetylgalactosaminyltransferase-3 in colonic adenocarcinoma extracts. Inoue, M., Takahashi, S., Yamashina, I., Kaibori, M., Okumura, T., Kamiyama, Y., Vichier-Guerre, S., Cantacuzène, D., Nakada, H. Cancer Res. (2001) [Pubmed]
  2. Structural analysis of the Y299C mutant of Escherichia coli UDP-galactose 4-epimerase. Teaching an old dog new tricks. Thoden, J.B., Henderson, J.M., Fridovich-Keil, J.L., Holden, H.M. J. Biol. Chem. (2002) [Pubmed]
  3. Muscle uridine diphosphate-hexosamines do not decrease despite correction of hyperglycemia-induced insulin resistance in type 2 diabetes. Pouwels, M.J., Span, P.N., Tack, C.J., Olthaar, A.J., Sweep, C.G., van Engelen, B.G., de Jong, J.G., Lutterman, J.A., Hermus, A.R. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  4. Genomic instability and tumor-specific alterations in oral squamous cell carcinomas assessed by inter-(simple sequence repeat) PCR. Viswanathan, M., Sangiliyandi, G., Vinod, S.S., Mohanprasad, B.K., Shanmugam, G. Clin. Cancer Res. (2003) [Pubmed]
  5. Glycosylation of the tandem repeat unit of the MUC2 polypeptide leading to the synthesis of the Tn antigen. Inoue, M., Yamashina, I., Nakada, H. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  6. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Kingsley, D.M., Kozarsky, K.F., Hobbie, L., Krieger, M. Cell (1986) [Pubmed]
  7. Expression cloning of Forssman glycolipid synthetase: a novel member of the histo-blood group ABO gene family. Haslam, D.B., Baenziger, J.U. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Structural Effects of Naturally Occurring Human Blood Group B Galactosyltransferase Mutations Adjacent to the DXD Motif. Persson, M., Letts, J.A., Hosseini-Maaf, B., Borisova, S.N., Palcic, M.M., Evans, S.V., Olsson, M.L. J. Biol. Chem. (2007) [Pubmed]
  9. Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. Thoden, J.B., Wohlers, T.M., Fridovich-Keil, J.L., Holden, H.M. J. Biol. Chem. (2001) [Pubmed]
  10. Mediators of galactose sensitivity in UDP-galactose 4'-epimerase-impaired mammalian cells. Schulz, J.M., Ross, K.L., Malmstrom, K., Krieger, M., Fridovich-Keil, J.L. J. Biol. Chem. (2005) [Pubmed]
  11. Glycoprotein biosynthesis during the acute-phase response to inflammation. Jamieson, J.C., Kaplan, H.A., Woloski, B.M., Hellman, M., Ham, K. Can. J. Biochem. Cell Biol. (1983) [Pubmed]
  12. Augmentation of UDP-GalNAc: Fucalpha1-2Gal alpha1-3 N-acetylgalactosaminyl transferase activity in nitrosamine-induced hamster pancreatic cancers. Hirota, M., Egami, H., Ogawa, M. J. Exp. Clin. Cancer Res. (2000) [Pubmed]
  13. Characterization of the human Forssman synthetase gene. An evolving association between glycolipid synthesis and host-microbial interactions. Xu, H., Storch, T., Yu, M., Elliott, S.P., Haslam, D.B. J. Biol. Chem. (1999) [Pubmed]
  14. Sodium monofluorophosphate increases vertebral bone mineral density in patients with corticosteroid-induced osteoporosis. Rizzoli, R., Chevalley, T., Slosman, D.O., Bonjour, J.P. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. (1995) [Pubmed]
  15. Chemoenzymatic synthesis of biotinylated nucleotide sugars as substrates for glycosyltransferases. Bülter, T., Schumacher, T., Namdjou, D.J., Gutiérrez Gallego, R., Clausen, H., Elling, L. Chembiochem (2001) [Pubmed]
  16. Isolation of a porcine UDP-GalNAc transferase cDNA mapping to the region of the blood group EAA locus on pig chromosome 1. Meijerink, E., Neuenschwander, S., Dinter, A., Yerle, M., Stranzinger, G., Vögeli, P. Anim. Genet. (2001) [Pubmed]
  17. Order and maximum incorporation of N-acetyl-D-galactosamine into threonine residues of MUC2 core peptide with microsome fraction of human-colon-carcinoma LS174T cells. Iida, S., Takeuchi, H., Kato, K., Yamamoto, K., Irimura, T. Biochem. J. (2000) [Pubmed]
  18. Forssman synthetase expression results in diminished shiga toxin susceptibility: a role for glycolipids in determining host-microbe interactions. Elliott, S.P., Yu, M., Xu, H., Haslam, D.B. Infect. Immun. (2003) [Pubmed]
  19. Glycosylation in lepidopteran insect cells: identification of a beta 1-->4-N-acetylgalactosaminyltransferase involved in the synthesis of complex-type oligosaccharide chains. van Die, I., van Tetering, A., Bakker, H., van den Eijnden, D.H., Joziasse, D.H. Glycobiology (1996) [Pubmed]
  20. Immunochemistry of Ii-active glycosphingolipids of erythrocytes. Kościelak, J., Zdebska, E., Wilczyńska, Z., Miller-Podraza, H., Dzierzkowa-Borodej, W. Eur. J. Biochem. (1979) [Pubmed]
  21. Cyst wall synthase: N-acetylgalactosaminyltransferase activity is induced to form the novel N-acetylgalactosamine polysaccharide in the Giardia cyst wall. Karr, C.D., Jarroll, E.L. Microbiology (Reading, Engl.) (2004) [Pubmed]
  22. Fragment-based Screening of the Donor Substrate Specificity of Human Blood Group B Galactosyltransferase Using Saturation Transfer Difference NMR. Blume, A., Angulo, J., Biet, T., Peters, H., Benie, A.J., Palcic, M., Peters, T. J. Biol. Chem. (2006) [Pubmed]
  23. Identification and modification of the uridine-binding site of the UDP-GalNAc (GlcNAc) pyrophosphorylase. Wang-Gillam, A., Pastuszak, I., Stewart, M., Drake, R.R., Elbein, A.D. J. Biol. Chem. (2000) [Pubmed]
  24. Identification of a novel ganglioside on erythrocytes with blood group Cad specificity. Blanchard, D., Piller, F., Gillard, B., Marcus, D., Cartron, J.P. J. Biol. Chem. (1985) [Pubmed]
  25. Low expression of polypeptide GalNAc N-acetylgalactosaminyl transferase-3 in lung adenocarcinoma: impact on poor prognosis and early recurrence. Gu, C., Oyama, T., Osaki, T., Li, J., Takenoyama, M., Izumi, H., Sugio, K., Kohno, K., Yasumoto, K. Br. J. Cancer (2004) [Pubmed]
  26. Preparation and enzymatic degradation of monosulfogangliotriaosylceramide. Ishizuka, I., Nagai, K., Kawaguchi, K., Tadano-Aritomi, K., Toida, T., Hirabayashi, Y., Li, Y.T., Li, S.C. J. Biol. Chem. (1985) [Pubmed]
  27. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. Wandall, H.H., Hassan, H., Mirgorodskaya, E., Kristensen, A.K., Roepstorff, P., Bennett, E.P., Nielsen, P.A., Hollingsworth, M.A., Burchell, J., Taylor-Papadimitriou, J., Clausen, H. J. Biol. Chem. (1997) [Pubmed]
  28. Studies on the order and site specificity of GalNAc transfer to MUC1 tandem repeats by UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase from milk or mammary carcinoma cells. Stadie, T.R., Chai, W., Lawson, A.M., Byfield, P.G., Hanisch, F.G. Eur. J. Biochem. (1995) [Pubmed]
  29. IDDM7 links to insulin-dependent diabetes mellitus in Danish multiplex families but linkage is not explained by novel polymorphisms in the candidate gene GALNT3. The Danish Study Group of Diabetes in Childhood and The Danish IDDM Epidemiology and Genetics Group. Kristiansen, O.P., Pociot, F., Bennett, E.P., Clausen, H., Johannesen, J., Nerup, J., Mandrup-Poulsen, T. Hum. Mutat. (2000) [Pubmed]
  30. Regulation of sialomucin production in colon carcinoma cells. Dohi, D.F., Sutton, R.C., Frazier, M.L., Nakamori, S., McIsaac, A.M., Irimura, T. J. Biol. Chem. (1993) [Pubmed]
  31. A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. Wang-Gillam, A., Pastuszak, I., Elbein, A.D. J. Biol. Chem. (1998) [Pubmed]
  32. N-acetylgalactosamine incorporation into a peptide containing consecutive threonine residues by UDP-N-acetyl-D-galactosaminide:polypeptide N-acetylgalactosaminyltransferases. Kato, K., Takeuchi, H., Kanoh, A., Mandel, U., Hassan, H., Clausen, H., Irimura, T. Glycobiology (2001) [Pubmed]
  33. 31P MRS of human tumor cells: effects of culture media and conditions on phospholipid metabolite concentrations. Franks, S.E., Kuesel, A.C., Lutz, N.W., Hull, W.E. Anticancer Res. (1996) [Pubmed]
  34. Cloning and expression of a brain-specific putative UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase gene. Nakamura, N., Toba, S., Hirai, M., Morishita, S., Mikami, T., Konishi, M., Itoh, N., Kurosaka, A. Biol. Pharm. Bull. (2005) [Pubmed]
 
WikiGenes - Universities