The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Klc  -  Kinesin light chain

Drosophila melanogaster

Synonyms: CG5433, DKLC, Dmel\CG5433, KLC, kinesin, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Klc

  • KLP68D protein produced in Escherichia coli is, like kinesin itself, a plus-end directed microtubule motor [1].
  • Antibodies purified from these sera by their affinity for brain kinesin react with a polypeptide of approximately 120 kD in extracts from bovine brain, PtK1 cells, and mouse neuroblastoma cells [2].
  • When BDTC (a 1.3-S subunit of Propionibacterium shermanii transcarboxylase, which binds weakly to a microtubule), was fused to the tail (C-terminus) of K351, its movement was enhanced, smooth, and unidirectional, similar to that of the two-headed kinesin fragment, K411 [3].

Psychiatry related information on Klc

  • Loss of Klc function results in progressive lethargy, crawling defects, and paralysis followed by death at the end of the second larval instar [4].
  • The microtubule motor activity of kinesin is performed by the heavy chains, but the functions of the light chains are poorly understood [4].

High impact information on Klc

  • Mutations in sunday driver (syd) and the axonal transport motor kinesin-I cause similar phenotypes in Drosophila, including aberrant accumulations of axonal cargoes [5].
  • We propose that SYD mediates the axonal transport of at least one class of vesicles by interacting directly with KLC [5].
  • Members of the kinesin superfamily share a similar motor catalytic domain yet move either toward the plus end (e.g., conventional kinesin) or the minus end (e.g., Ncd) of microtubules [6].
  • The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain [6].
  • Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2 [7].

Biological context of Klc


Anatomical context of Klc

  • Klc mutant axons contain large aggregates of membranous organelles in segmental nerve axons [4].
  • We find that milton, a gene whose product was previously shown to associate with Kinesin and to mediate axonal transport of mitochondria, is needed to form a normal Balbiani body [11].
  • BACKGROUND: Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells [12].
  • Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila [13].
  • An epitope-tagged YETI fusion protein, when expressed in Drosophila S2 cultured cells, binds to kinesin-I in copurification assays, suggesting that YETI-kinesin-I interactions are context-independent [14].

Associations of Klc with chemical compounds


Physical interactions of Klc


Regulatory relationships of Klc

  • When not bound to cargo, the motor protein kinesin is in an inhibited state that has low microtubule-stimulated ATPase activity [20].

Other interactions of Klc


Analytical, diagnostic and therapeutic context of Klc


  1. Characterization of the KLP68D kinesin-like protein in Drosophila: possible roles in axonal transport. Pesavento, P.A., Stewart, R.J., Goldstein, L.S. J. Cell Biol. (1994) [Pubmed]
  2. Localization of kinesin in cultured cells. Neighbors, B.W., Williams, R.C., McIntosh, J.R. J. Cell Biol. (1988) [Pubmed]
  3. Motility of single one-headed kinesin molecules along microtubules. Inoue, Y., Iwane, A.H., Miyai, T., Muto, E., Yanagida, T. Biophys. J. (2001) [Pubmed]
  4. Kinesin light chains are essential for axonal transport in Drosophila. Gindhart, J.G., Desai, C.J., Beushausen, S., Zinn, K., Goldstein, L.S. J. Cell Biol. (1998) [Pubmed]
  5. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Bowman, A.B., Kamal, A., Ritchings, B.W., Philp, A.V., McGrail, M., Gindhart, J.G., Goldstein, L.S. Cell (2000) [Pubmed]
  6. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Case, R.B., Pierce, D.W., Hom-Booher, N., Hart, C.L., Vale, R.D. Cell (1997) [Pubmed]
  7. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Robbins, D.J., Nybakken, K.E., Kobayashi, R., Sisson, J.C., Bishop, J.M., Thérond, P.P. Cell (1997) [Pubmed]
  8. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Gunawardena, S., Goldstein, L.S. Neuron (2001) [Pubmed]
  9. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Palacios, I.M., St Johnston, D. Development (2002) [Pubmed]
  10. The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. Gauger, A.K., Goldstein, L.S. J. Biol. Chem. (1993) [Pubmed]
  11. Milton controls the early acquisition of mitochondria by Drosophila oocytes. Cox, R.T., Spradling, A.C. Development (2006) [Pubmed]
  12. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Duncan, J.E., Warrior, R. Curr. Biol. (2002) [Pubmed]
  13. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Hurd, D.D., Saxton, W.M. Genetics (1996) [Pubmed]
  14. The Drosophila kinesin-I associated protein YETI binds both kinesin subunits. Wisniewski, T.P., Tanzi, C.L., Gindhart, J.G. Biol. Cell (2003) [Pubmed]
  15. Microtubule-kinesin interface mutants reveal a site critical for communication. Klumpp, L.M., Brendza, K.M., Gatial, J.E., Hoenger, A., Saxton, W.M., Gilbert, S.P. Biochemistry (2004) [Pubmed]
  16. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Lombillo, V.A., Stewart, R.J., McIntosh, J.R. Nature (1995) [Pubmed]
  17. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Hirose, K., Lockhart, A., Cross, R.A., Amos, L.A. Nature (1995) [Pubmed]
  18. Chromophore-assisted light inactivation and self-organization of microtubules and motors. Surrey, T., Elowitz, M.B., Wolf, P.E., Yang, F., Nédélec, F., Shokat, K., Leibler, S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Mechanical and chemical properties of cysteine-modified kinesin molecules. Iwatani, S., Iwane, A.H., Higuchi, H., Ishii, Y., Yanagida, T. Biochemistry (1999) [Pubmed]
  20. Kinesin's tail domain is an inhibitory regulator of the motor domain. Coy, D.L., Hancock, W.O., Wagenbach, M., Howard, J. Nat. Cell Biol. (1999) [Pubmed]
  21. Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila. Ray, K., Perez, S.E., Yang, Z., Xu, J., Ritchings, B.W., Steller, H., Goldstein, L.S. J. Cell Biol. (1999) [Pubmed]
  22. An N-terminal truncation of the ncd motor protein supports diffusional movement of microtubules in motility assays. Chandra, R., Endow, S.A., Salmon, E.D. J. Cell. Sci. (1993) [Pubmed]
  23. Expression, purification, and characterization of the Drosophila kinesin motor domain produced in Escherichia coli. Gilbert, S.P., Johnson, K.A. Biochemistry (1993) [Pubmed]
  24. Enhancement of the ncdD microtubule motor mutant by mutants of alpha Tub67C. Komma, D.J., Endow, S.A. J. Cell. Sci. (1997) [Pubmed]
  25. Crystal structure of the motor domain of the kinesin-related motor ncd. Sablin, E.P., Kull, F.J., Cooke, R., Vale, R.D., Fletterick, R.J. Nature (1996) [Pubmed]
  26. Purification of novel kinesins from embryonic systems. Meyer, D., Rines, D.R., Kashina, A., Cole, D.G., Scholey, J.M. Meth. Enzymol. (1998) [Pubmed]
  27. Structures of kinesin and kinesin-microtubule interactions. Mandelkow, E., Hoenger, A. Curr. Opin. Cell Biol. (1999) [Pubmed]
WikiGenes - Universities