The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

mutM  -  formamidopyrimidine-DNA glycosylase

Escherichia coli UTI89

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of mutM

  • The significance of this DNA repair activity acting on 8-oxoguanine is shown by the ability of S3 to rescue the H2O2 sensitivity of an Escherichia coli mutM strain (defective for the repair of 8-oxoguanine) and to abolish completely the mutator phenotype of mutM caused by 8-oxoguanine-mediated G-->T transversions [1].
  • The mutM (fpg) gene, which encodes a DNA glycosylase that excises an oxidatively damaged form of guanine, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8 [2].
  • We have previously reported that the majority of base substitution mutations of the Escherichia coli supF gene induced by riboflavin mediated photosensitization were G:C to C:G changes, in addition to G:C to T:A changes which were probably caused by 8-hydroxyguanine (oh(8)Gua), in wild type and mutM mutator mutant strains [3].
  • Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total lambdabio transducing phages in the wild type or in the mutM mutant, respectively [4].
  • In the current studies, we investigated base substitutions in the Bacillus subtilis mutT, mutM, and mutY DNA error-prevention system [5].

High impact information on mutM


Chemical compound and disease context of mutM


Biological context of mutM


Anatomical context of mutM

  • To determine whether these DNA repair proteins can reduce O(2)-mediated DNA damage in lung cells, A549 lung epithelial cells were transduced with either hOgg1 or Fpg using a retroviral vector containing enhanced green fluorescent protein [19].

Associations of mutM with chemical compounds

  • Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue [20].
  • Overexpression of the MutS repair protein significantly decreased the rate of lacZ GC --> TA transversion mutation in stationary-phase and exponentially growing bacteria and in mutY and mutM mutants, which accumulate mismatches between 8-oxoguanine (8-oxoG) and adenine residues in DNA [21].
  • Bacteria carrying mutM or fpg-1 mutations (defective in Fapy glycosylase, which removes oxidized guanine residues such as 8-oxoG) show little or no enhancement of mutation under starvation conditions [22].
  • These results show that expression of the Fpg protein increases the cell resistance to thiotepa and suggest that this compound produces ring-opened guanines, which are involved in its cytotoxic action [11].
  • Using multiple sequence alignments, we have identified six target residues in endoVIII that may be involved in the enzyme's glycosylase and/or lyase functions: the N-terminal proline, and five acidic residues that are completely conserved in the endoVIII-Fpg proteins [23].

Other interactions of mutM


Analytical, diagnostic and therapeutic context of mutM


  1. A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. Yacoub, A., Augeri, L., Kelley, M.R., Doetsch, P.W., Deutsch, W.A. EMBO J. (1996) [Pubmed]
  2. Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8. Mikawa, T., Kato, R., Sugahara, M., Kuramitsu, S. Nucleic Acids Res. (1998) [Pubmed]
  3. Delayed transfection of DNA after riboflavin mediated photosensitization increases G:C to C:G transversions of supF gene in Escherichia coli mutY strain. Takimoto, K., Tano, K., Hashimoto, M., Hori, M., Akasaka, S., Utsumi, H. Mutat. Res. (1999) [Pubmed]
  4. Escherichia coli mutM suppresses illegitimate recombination induced by oxidative stress. Onda, M., Hanada, K., Kawachi, H., Ikeda, H. Genetics (1999) [Pubmed]
  5. Analysis of spontaneous base substitutions generated in mutator strains of Bacillus subtilis. Sasaki, M., Kurusu, Y. FEMS Microbiol. Lett. (2004) [Pubmed]
  6. Inherited variants of MYH associated with somatic G:C-->T:A mutations in colorectal tumors. Al-Tassan, N., Chmiel, N.H., Maynard, J., Fleming, N., Livingston, A.L., Williams, G.T., Hodges, A.K., Davies, D.R., David, S.S., Sampson, J.R., Cheadle, J.P. Nat. Genet. (2002) [Pubmed]
  7. Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. Zharkov, D.O., Golan, G., Gilboa, R., Fernandes, A.S., Gerchman, S.E., Kycia, J.H., Rieger, R.A., Grollman, A.P., Shoham, G. EMBO J. (2002) [Pubmed]
  8. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Hazra, T.K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y.W., Jaruga, P., Dizdaroglu, M., Mitra, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Rosenquist, T.A., Zharkov, D.O., Grollman, A.P. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Lynn, S., Gurr, J.R., Lai, H.T., Jan, K.Y. Circ. Res. (2000) [Pubmed]
  11. Increased resistance to N,N',N"-triethylenethiophosphoramide (thiotepa) in cells expressing the Escherichia coli formamidopyrimidine-DNA glycosylase. Gill, R.D., Cussac, C., Souhami, R.L., Laval, F. Cancer Res. (1996) [Pubmed]
  12. The pyrimidine ring-opened derivative of 1,N6-ethenoadenine is excised from DNA by the Escherichia coli Fpg and Nth proteins. Speina, E., Ciesla, J.M., Wojcik, J., Bajek, M., Kusmierek, J.T., Tudek, B. J. Biol. Chem. (2001) [Pubmed]
  13. NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein. Zharkov, D.O., Rieger, R.A., Iden, C.R., Grollman, A.P. J. Biol. Chem. (1997) [Pubmed]
  14. Characterization and mapping of DNA damage induced by reactive metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at nucleotide resolution in human genomic DNA. Cloutier, J.F., Drouin, R., Weinfeld, M., O'Connor, T.R., Castonguay, A. J. Mol. Biol. (2001) [Pubmed]
  15. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Sakai, A., Nakanishi, M., Yoshiyama, K., Maki, H. Genes Cells (2006) [Pubmed]
  16. Identification of repair enzymes for 5-formyluracil in DNA. Nth, Nei, and MutM proteins of Escherichia coli. Zhang, Q.M., Miyabe, I., Matsumoto, Y., Kino, K., Sugiyama, H., Yonei, S. J. Biol. Chem. (2000) [Pubmed]
  17. Genomic structure and chromosomal localization of the mouse Ogg1 gene that is involved in the repair of 8-hydroxyguanine in DNA damage. Tani, M., Shinmura, K., Kohno, T., Shiroishi, T., Wakana, S., Kim, S.R., Nohmi, T., Kasai, H., Takenoshita, S., Nagamachi, Y., Yokota, J. Mamm. Genome (1998) [Pubmed]
  18. Miscoding and misincorporation of 8-oxo-guanine during leading and lagging strand synthesis in Escherichia coli. Watanabe, T., van Geldorp, G., Najrana, T., Yamamura, E., Nunoshiba, T., Yamamoto, K. Mol. Gen. Genet. (2001) [Pubmed]
  19. Protection of human lung cells against hyperoxia using the DNA base excision repair genes hOgg1 and Fpg. Wu, M., He, Y.H., Kobune, M., Xu, Y., Kelley, M.R., Martin, W.J. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  20. Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue. Aburatani, H., Hippo, Y., Ishida, T., Takashima, R., Matsuba, C., Kodama, T., Takao, M., Yasui, A., Yamamoto, K., Asano, M. Cancer Res. (1997) [Pubmed]
  21. Reduction of GC --> TA transversion mutation by overexpression of MutS in Escherichia coli K-12. Zhao, J., Winkler, M.E. J. Bacteriol. (2000) [Pubmed]
  22. Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine. Bridges, B.A., Sekiguchi, M., Tajiri, T. Mol. Gen. Genet. (1996) [Pubmed]
  23. Determination of active site residues in Escherichia coli endonuclease VIII. Burgess, S., Jaruga, P., Dodson, M.L., Dizdaroglu, M., Lloyd, R.S. J. Biol. Chem. (2002) [Pubmed]
  24. Catalytic Mechanism of Escherichia coli Endonuclease VIII: Roles of the Intercalation Loop and the Zinc Finger. Kropachev, K.Y., Zharkov, D.O., Grollman, A.P. Biochemistry (2006) [Pubmed]
  25. Molecular cloning of AtMMH, an Arabidopsis thaliana ortholog of the Escherichia coli mutM gene, and analysis of functional domains of its product. Ohtsubo, T., Matsuda, O., Iba, K., Terashima, I., Sekiguchi, M., Nakabeppu, Y. Mol. Gen. Genet. (1998) [Pubmed]
  26. High Resolution Characterization of Formamidopyrimidine-DNA Glycosylase Interaction with Its Substrate by Chemical Cross-linking and Mass Spectrometry Using Substrate Analogs. Rogacheva, M., Ishchenko, A., Saparbaev, M., Kuznetsova, S., Ogryzko, V. J. Biol. Chem. (2006) [Pubmed]
  27. Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain. Buchko, G.W., Hess, N.J., Bandaru, V., Wallace, S.S., Kennedy, M.A. Biochemistry (2000) [Pubmed]
  28. Recognition of damaged DNA by Escherichia coli Fpg protein: insights from structural and kinetic data. Zharkov, D.O., Ishchenko, A.A., Douglas, K.T., Nevinsky, G.A. Mutat. Res. (2003) [Pubmed]
  29. Isolation of a formamidopyrimidine-DNA glycosylase (fpg) mutant of Escherichia coli K12. Boiteux, S., Huisman, O. Mol. Gen. Genet. (1989) [Pubmed]
WikiGenes - Universities