The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CASP3  -  caspase 3, apoptosis-related cysteine...

Bos taurus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CASP3

 

High impact information on CASP3

  • Furthermore, rat cardiac myofilaments exposed to caspase-3 exhibited similar patterns of myofibrillar protein cleavage [6].
  • Our results indicate that caspase-3 cleaved myofibrillar proteins, resulting in an impaired force/Ca(2+) relationship and myofibrillar ATPase activity [6].
  • In eNOS-transfected COS-7 cells, staurosporine-induced activation of caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage coincided with increased eNOS degradation and decreased activity [7].
  • PSI-mediated cell death could be blocked by a caspase-3 inhibitor (Ac-DEVD-H), but not by a caspase-1 inhibitor (Ac-YVAD-H), suggesting that a caspase-3-like enzyme is activated during PSI-induced apoptosis [8].
  • Apoptosis was measured in annexin V and caspase 3 assays [9].
 

Chemical compound and disease context of CASP3

 

Biological context of CASP3

 

Anatomical context of CASP3

  • In this study, we have examined the effect of S-nitrosothiol transport on intracellular thiol status and upon the activity of a target protein (caspase-3), in bovine aortic endothelial cells [14].
  • Cells exhibited reduced mitochondrial membrane potential, increased caspase-3 activation, nuclear condensation, terminal deoxynucleotidyl transferase nick end labeling staining, and detachment from the culture dish [15].
  • Using a cell-free system consisting of purified bovine PARP as a substrate and an apoptotic extract or recombinant caspase-3 as the PARP protease, Zn2+ inhibited PARP proteolysis in the low micromolar range [12].
  • Preincubation of lens epithelial cells with caspase inhibitors caused complete inhibition of lactacystin- or staurosporin-induced caspase-3 activation (Z-DEVD-FMK/Z-VAD-FMK) and also of caspase-2, -4, -8, and -9 (Z-VAD-FMK), but the reduction in TUNEL-positive cells was only partial [16].
  • The overall results indirectly show that intraluteal P4 suppresses apoptosis in bovine luteal cells through the inhibition of Fas and caspase-3 mRNA expression and inhibition of caspase-3 activation [17].
 

Associations of CASP3 with chemical compounds

  • In addition, the activity of caspase-3 proteases was increased after exposure to high glucose, whereas caspase inhibitors prevented endothelial cell death induced by high D-glucose [18].
  • Incubation with 0.4 mmol/l palmitate for 24 h induced both oxidant stress and apoptosis, as evidenced by a sixfold increase in DCF fluorescence and a twofold increase in caspase-3 activation, respectively [19].
  • NAD(P)H oxidase appeared to be involved in these responses, since overexpression of dominant-negative subunits of NAD(P)H oxidase, such as phox47(DN), diminished oxidant stress, and phox67(DN) and N-17 RAC1(DN) prevented the increase in caspase-3 activity [19].
  • Western blot analysis revealed that treatment with CDB-2914 significantly decreased the expression of PCNA and Bcl-2 protein and increased the expression of cleaved caspase-3 and cleaved PARP in a dose-dependent manner compared with untreated control cultures [2].
  • Ferryl Mb formation correlated with the induction of apoptosis as indicated by morphological criteria, caspase 3 activation, phosphatidylserine (PS) externalization, and nuclear condensation by Hoechst 33342 staining [20].
 

Regulatory relationships of CASP3

 

Other interactions of CASP3

 

Analytical, diagnostic and therapeutic context of CASP3

References

  1. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Kalaaji, M., Mortensen, E., Jørgensen, L., Olsen, R., Rekvig, O.P. Am. J. Pathol. (2006) [Pubmed]
  2. Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5'-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells. Xu, Q., Takekida, S., Ohara, N., Chen, W., Sitruk-Ware, R., Johansson, E.D., Maruo, T. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  3. The latency-related gene encoded by bovine herpesvirus 1 can suppress caspase 3 and caspase 9 cleavage during productive infection. Henderson, G., Perng, G.C., Nesburn, A.B., Wechsler, S.L., Jones, C. J. Neurovirol. (2004) [Pubmed]
  4. Overexpression of regucalcin suppresses apoptotic cell death in the cloned rat hepatoma H4-II-E cells induced by a naturally occurring isothiocyanate sulforaphane. Fukaya, Y., Yamaguchi, M. Int. J. Mol. Med. (2005) [Pubmed]
  5. PR39 inhibits apoptosis in hypoxic endothelial cells: role of inhibitor apoptosis protein-2. Wu, J., Parungo, C., Wu, G., Kang, P.M., Laham, R.J., Sellke, F.W., Simons, M., Li, J. Circulation (2004) [Pubmed]
  6. Functional consequences of caspase activation in cardiac myocytes. Communal, C., Sumandea, M., de Tombe, P., Narula, J., Solaro, R.J., Hajjar, R.J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Effect of staurosporine-induced apoptosis on endothelial nitric oxide synthase in transfected COS-7 cells and primary endothelial cells. Tesauro, M., Thompson, W.C., Moss, J. Cell Death Differ. (2006) [Pubmed]
  8. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. Drexler, H.C., Risau, W., Konerding, M.A. FASEB J. (2000) [Pubmed]
  9. The Anti-angiogenic Activity of rPAI-123 Inhibits Fibroblast Growth Factor-2 Functions. Drinane, M., Walsh, J., Mollmark, J., Simons, M., Mulligan-Kehoe, M.J. J. Biol. Chem. (2006) [Pubmed]
  10. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. Barber, A.J., Nakamura, M., Wolpert, E.B., Reiter, C.E., Seigel, G.M., Antonetti, D.A., Gardner, T.W. J. Biol. Chem. (2001) [Pubmed]
  11. Inhibition of oxidized low-density lipoprotein-induced apoptosis in endothelial cells by nitric oxide. Peroxyl radical scavenging as an antiapoptotic mechanism. Kotamraju, S., Hogg, N., Joseph, J., Keefer, L.K., Kalyanaraman, B. J. Biol. Chem. (2001) [Pubmed]
  12. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. Perry, D.K., Smyth, M.J., Stennicke, H.R., Salvesen, G.S., Duriez, P., Poirier, G.G., Hannun, Y.A. J. Biol. Chem. (1997) [Pubmed]
  13. Basic fibroblast growth factor selectively enhances TNF-alpha-induced apoptotic cell death in glomerular endothelial cells: effects on apoptotic signaling pathways. Messmer, U.K., Briner, V.A., Pfeilschifter, J. J. Am. Soc. Nephrol. (2000) [Pubmed]
  14. Requirement of Transmembrane Transport for S-Nitrosocysteine-dependent Modification of Intracellular Thiols. Broniowska, K.A., Zhang, Y., Hogg, N. J. Biol. Chem. (2006) [Pubmed]
  15. Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. Kainulainen, T., Pender, A., D'Addario, M., Feng, Y., Lekic, P., McCulloch, C.A. J. Biol. Chem. (2002) [Pubmed]
  16. Caspase and proteasome activity during staurosporin-induced apoptosis in lens epithelial cells. Andersson, M., Sjöstrand, J., Petersen, A., Honarvar, A.K., Karlsson, J.O. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  17. Progesterone is a suppressor of apoptosis in bovine luteal cells. Okuda, K., Korzekwa, A., Shibaya, M., Murakami, S., Nishimura, R., Tsubouchi, M., Woclawek-Potocka, I., Skarzynski, D.J. Biol. Reprod. (2004) [Pubmed]
  18. Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Nakagami, H., Morishita, R., Yamamoto, K., Yoshimura, S.I., Taniyama, Y., Aoki, M., Matsubara, H., Kim, S., Kaneda, Y., Ogihara, T. Diabetes (2001) [Pubmed]
  19. Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide. Cacicedo, J.M., Benjachareowong, S., Chou, E., Ruderman, N.B., Ido, Y. Diabetes (2005) [Pubmed]
  20. A role for the myoglobin redox cycle in the induction of endothelial cell apoptosis. D'Agnillo, F., Alayash, A.I. Free Radic. Biol. Med. (2002) [Pubmed]
  21. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Kimura, H., Gules, I., Meguro, T., Zhang, J.H. Brain Res. (2003) [Pubmed]
  22. Cocaine-mediated apoptosis in bovine coronary artery endothelial cells: role of nitric oxide. He, J., Xiao, Y., Zhang, L. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  23. Signaling through interleukin-1 type 1 receptor diminishes Haemophilus somnus lipooligosaccharide-mediated apoptosis of endothelial cells. Sylte, M.J., Kuckleburg, C.J., Atapattu, D., Leite, F.P., McClenahan, D., Inzana, T.J., Czuprynski, C.J. Microb. Pathog. (2005) [Pubmed]
  24. Decreased apoptosis of beta 2- integrin-deficient bovine neutrophils. Nagahata, H., Higuchi, H., Teraoka, H., Takahashi, K., Takahashi, K., Kuwabara, M., Inanami, O., Kuwabara, M. Immunol. Cell Biol. (2004) [Pubmed]
  25. Relationship between low-molecular-weight insulin-like growth factor-binding proteins, caspase-3 activity, and oocyte quality. Nicholas, B., Alberio, R., Fouladi-Nashta, A.A., Webb, R. Biol. Reprod. (2005) [Pubmed]
  26. Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes. Liu, B., Bhat, M., Padival, A.K., Smith, D.G., Nagaraj, R.H. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  27. Caspase-3 activation during apoptosis caused by glutathione-doxorubicin conjugate. Asakura, T., Sawai, T., Hashidume, Y., Ohkawa, Y., Yokoyama, S., Ohkawa, K. Br. J. Cancer (1999) [Pubmed]
  28. Apoptotic stress pathway activation mediated by iron on endothelial cells in vitro. Carlini, R.G., Alonzo, E., Bellorin-Font, E., Weisinger, J.R. Nephrol. Dial. Transplant. (2006) [Pubmed]
 
WikiGenes - Universities