The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

RIEG2  -  Rieger syndrome 2

Homo sapiens

Synonyms: ARS, RGS2
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of RIEG2

  • Thus, proteasomal regulation of RGS expression in HEK293 cells strongly controls RGS function and a novel RGS2 mutation with decreased protein expression could be relevant to the pathophysiology of hypertension in humans [1].
  • These effects were blocked in cells infected with the adenovirus expressing RGS2 [2].
  • These results indicate that RGS2 is an important negative-regulatory factor in cardiac hypertrophy produced by alpha(1)-adrenergic receptor stimulation through complex mechanisms involving the modulation of mitogen-activated protein kinase signaling pathways [2].
  • Axenfeld-Rieger Syndrome (ARS) is a genetically heterogeneous birth defect characterized by malformation of the anterior segment of the eye associated with glaucoma [3].
  • The ocular component of the ARS phenotype has acquired most clinical attention and has been dissected into a spectrum of developmental eye disorders, of which open-angle glaucoma represents the main challenge in terms of treatment [4].
 

Psychiatry related information on RIEG2

 

High impact information on RIEG2

  • Genome data reveal a growing number of open reading frames encoding ARS-like proteins [8].
  • In wild-type cells treated with HU, early ARS elements replicated but late ones did not [9].
  • Mutations in PITX2 associated with Axenfeld-Rieger syndrome (ARS) provided the first link of this homeodomain transcription factor to tooth development [10].
  • Altogether these data suggest a molecular mechanism for tooth development involving Dlx2 gene expression in ARS patients [10].
  • For the first time, we present evidence that increased PITX2 activity may underlie the severe ARS ocular phenotype [11].
 

Chemical compound and disease context of RIEG2

 

Biological context of RIEG2

 

Anatomical context of RIEG2

  • PITX2 mutant proteins expressed in COS-7 cells were determined to be stable and localized to the nucleus; however, the Arg53Pro ARS mutant also displayed cytoplasmic staining [17].
  • To assess the role of endogenous RGS2, we characterized G(s) and G(q) signaling in osteoblasts derived from wild type and rgs2(-/-) mice [20].
  • We report that both H295R cells and human adrenal gland express RGS2 mRNA [21].
  • RGS2 promotes formation of neurites by stimulating microtubule polymerization [22].
  • Immunocytochemical analysis showed that endogenous RGS2 was localized at the termini of neurites in differentiated PC12 cells [22].
 

Associations of RIEG2 with chemical compounds

  • In contrast, a destabilizing mutation in RGS2 (RGS2-Q2L) recently identified as a rare N-terminal genetic variant in a Japanese hypertensive cohort (J Hypertens 23:1497-1505, 2005) showed significantly reduced expression and inhibition of angiotensin II (AT(1)) receptor-stimulated accumulation of inositol phosphates [1].
  • N-Terminal Residues Control Proteasomal Degradation of RGS2, RGS4, and RGS5 in Human Embryonic Kidney 293 Cells [1].
  • By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein [19].
  • RGS2 overexpression by retroviral infection in H295R cells caused a decrease in Ang II-stimulated aldosterone secretion but did not modify cortisol secretion [21].
  • RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells [21].
 

Regulatory relationships of RIEG2

  • PITX2 DeltaT1261 is unable to interact with a cellular factor to synergistically activate transcription and demonstrates the first link of ARS with defective PITX2 protein interactions [23].
 

Other interactions of RIEG2

  • Haplotypic analysis of three Rieger syndrome regions in a large family with Axenfeld-Rieger syndrome excluded linkage to the 4q25 (PITX2), 6p25 (FOXC1), and 13q14 (RIEG2) regions [24].
  • We report on a three-generation family with Axenfeld-Rieger syndrome (ARS), harboring an alteration in the FKHL7 gene [16].
 

Analytical, diagnostic and therapeutic context of RIEG2

  • In H295R cells, Ang II caused a rapid and transient increase in RGS2 mRNA levels quantified by real-time RT-PCR [21].
  • Western blotting showed significant upregulation in protein products for Reelin 410 and Reelin 180 kDa and downregulation for NMDA3B and RGS2 [25].
  • The effect of palmitoylation on conformation of RGS2 was examined by monitoring spectra of the intrinsic fluorescence and Circular Dichroism [26].
  • Our in situ hybridization results obtained on human embryonic and fetal ocular tissue sections constitute the first molecular histological data providing an explanation for the occurrence of precocious glaucoma in human patients affected by ARS caused by PITX2 mutations [27].
  • In this study we investigated the effects of RGS2 on G protein modulation of recombinant P/Q-type channels expressed in a human embryonic kidney (HEK293) cell line using whole-cell recordings [28].

References

  1. N-Terminal Residues Control Proteasomal Degradation of RGS2, RGS4, and RGS5 in Human Embryonic Kidney 293 Cells. Bodenstein, J., Sunahara, R.K., Neubig, R.R. Mol. Pharmacol. (2007) [Pubmed]
  2. RGS2 is upregulated by and attenuates the hypertrophic effect of alpha(1)-adrenergic activation in cultured ventricular myocytes. Zou, M.X., Roy, A.A., Zhao, Q., Kirshenbaum, L.A., Karmazyn, M., Chidiac, P. Cell. Signal. (2006) [Pubmed]
  3. A novel homeobox mutation in the PITX2 gene in a family with Axenfeld-Rieger syndrome associated with brain, ocular, and dental phenotypes. Idrees, F., Bloch-Zupan, A., Free, S.L., Vaideanu, D., Thompson, P.J., Ashley, P., Brice, G., Rutland, P., Bitner-Glindzicz, M., Khaw, P.T., Fraser, S., Sisodiya, S.M., Sowden, J.C. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2006) [Pubmed]
  4. Current molecular understanding of Axenfeld-Rieger syndrome. Hjalt, T.A., Semina, E.V. Expert reviews in molecular medicine [electronic resource]. (2005) [Pubmed]
  5. Prospective study of FK506 side effects: anxiety or akathisia? DiMartini, A.F., Trzepacz, P.T., Daviss, S.R. Biol. Psychiatry (1996) [Pubmed]
  6. Genomic and transcriptional characterization of the human ACHE locus: complex involvement with acquired and inherited diseases. Shapira, M., Grant, A., Korner, M., Soreq, H. Isr. Med. Assoc. J. (2000) [Pubmed]
  7. Attention deficit hyperactivity symptoms and internet addiction. Yoo, H.J., Cho, S.C., Ha, J., Yune, S.K., Kim, S.J., Hwang, J., Chung, A., Sung, Y.H., Lyoo, I.K. Psychiatry and clinical neurosciences. (2004) [Pubmed]
  8. Regulation of RNA function by aminoacylation and editing? Geslain, R., Ribas de Pouplana, L. Trends Genet. (2004) [Pubmed]
  9. Regulation of replication timing in fission yeast. Kim, S.M., Huberman, J.A. EMBO J. (2001) [Pubmed]
  10. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Espinoza, H.M., Cox, C.J., Semina, E.V., Amendt, B.A. Hum. Mol. Genet. (2002) [Pubmed]
  11. Functional analyses of two newly identified PITX2 mutants reveal a novel molecular mechanism for Axenfeld-Rieger syndrome. Priston, M., Kozlowski, K., Gill, D., Letwin, K., Buys, Y., Levin, A.V., Walter, M.A., Héon, E. Hum. Mol. Genet. (2001) [Pubmed]
  12. Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells. Cao, X., Qin, J., Xie, Y., Khan, O., Dowd, F., Scofield, M., Lin, M.F., Tu, Y. Oncogene (2006) [Pubmed]
  13. HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. Tanaka, H., Ohshima, N., Ikenoya, M., Komori, K., Katoh, F., Hidaka, H. Cancer Res. (2003) [Pubmed]
  14. ARS Presidential Address: Estrogen therapy: a causal role in endometrial cancer? Rutledge, F.N. AJR. American journal of roentgenology. (1976) [Pubmed]
  15. Toxicity and in vitro metabolism of t-permethrin in eastern subterranean termite (Isoptera: Rhinotermitidae). Valles, S.M., Oi, F.M., Wagner, T., Brenner, R.J. J. Econ. Entomol. (2000) [Pubmed]
  16. Axenfeld-Rieger syndrome resulting from mutation of the FKHL7 gene on chromosome 6p25. Mirzayans, F., Gould, D.B., Héon, E., Billingsley, G.D., Cheung, J.C., Mears, A.J., Walter, M.A. Eur. J. Hum. Genet. (2000) [Pubmed]
  17. Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Kozlowski, K., Walter, M.A. Hum. Mol. Genet. (2000) [Pubmed]
  18. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Kulak, S.C., Kozlowski, K., Semina, E.V., Pearce, W.G., Walter, M.A. Hum. Mol. Genet. (1998) [Pubmed]
  19. RGS2 Inhibits the Epithelial Ca2+ Channel TRPV6. Schoeber, J.P., Topala, C.N., Wang, X., Diepens, R.J., Lambers, T.T., Hoenderop, J.G., Bindels, R.J. J. Biol. Chem. (2006) [Pubmed]
  20. Up-regulation of Endogenous RGS2 Mediates Cross-desensitization between Gs and Gq Signaling in Osteoblasts. Roy, A.A., Nunn, C., Ming, H., Zou, M.X., Penninger, J., Kirshenbaum, L.A., Dixon, S.J., Chidiac, P. J. Biol. Chem. (2006) [Pubmed]
  21. RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells. Romero, D.G., Plonczynski, M.W., Gomez-Sanchez, E.P., Yanes, L.L., Gomez-Sanchez, C.E. Endocrinology (2006) [Pubmed]
  22. RGS2 promotes formation of neurites by stimulating microtubule polymerization. Heo, K., Ha, S.H., Chae, Y.C., Lee, S., Oh, Y.S., Kim, Y.H., Kim, S.H., Kim, J.H., Mizoguchi, A., Itoh, T.J., Kwon, H.M., Ryu, S.H., Suh, P.G. Cell. Signal. (2006) [Pubmed]
  23. Protein kinase C phosphorylation modulates N- and C-terminal regulatory activities of the PITX2 homeodomain protein. Espinoza, H.M., Ganga, M., Vadlamudi, U., Martin, D.M., Brooks, B.P., Semina, E.V., Murray, J.C., Amendt, B.A. Biochemistry (2005) [Pubmed]
  24. Genetic analysis of PITX2 and FOXC1 in Rieger Syndrome patients from Brazil. Borges, A.S., Susanna, R., Carani, J.C., Betinjane, A.J., Alward, W.L., Stone, E.M., Sheffield, V.C., Nishimura, D.Y. Journal of glaucoma. (2002) [Pubmed]
  25. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Fatemi, S.H., Reutiman, T.J., Folsom, T.D., Bell, C., Nos, L., Fried, P., Pearce, D.A., Singh, S., Siderovski, D.P., Willard, F.S., Fukuda, M. Neuropsychopharmacology (2006) [Pubmed]
  26. Palmitoylation and its effect on the GTPase-activating activity and conformation of RGS2. Ni, J., Qu, L., Yang, H., Wang, M., Huang, Y. Int. J. Biochem. Cell Biol. (2006) [Pubmed]
  27. Identification of four new PITX2 gene mutations in patients with Axenfeld-Rieger syndrome. Vieira, V., David, G., Roche, O., de la Houssaye, G., Boutboul, S., Arbogast, L., Kobetz, A., Orssaud, C., Camand, O., Schorderet, D.F., Munier, F., Rossi, A., Delezoide, A.L., Marsac, C., Ricquier, D., Dufier, J.L., Menasche, M., Abitbol, M. Mol. Vis. (2006) [Pubmed]
  28. G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins. Mark, M.D., Wittemann, S., Herlitze, S. J. Physiol. (Lond.) (2000) [Pubmed]
 
WikiGenes - Universities