The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SGCG  -  sarcoglycan, gamma (35kDa dystrophin...

Homo sapiens

Synonyms: 35 kDa dystrophin-associated glycoprotein, 35DAG, A4, DAGA4, DMDA, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SGCG


Psychiatry related information on SGCG

  • Recent heroin abuse (n = 5) could be demonstrated to some extent with Drugwipe on samples from the tongue but only the two subjects with the highest saliva concentrations of MAM (> 500 ng/ml) and morphine (> 500 ng/ml) were positive [6].
  • Fixed-ratio (FR) discrimination learning in adult male spontaneously hypertensive rats (SHR), methylazoxymethanol-induced microencephalic Sprague-Dawley (MAM), and Sprague-Dawley control rats was examined [7].
  • Recent National DMDA surveys have shown that people with mood disorders often have incorrect information about their illnesses, that misdiagnoses are frequent, that a significant physician/patient communication gap exists, and that noncompliance is widespread [8].
  • The results of this preliminary study suggest that the MAM is a promising outcome measure that has adequate psychometric properties and can be used to complement other objective clinical measurements [9].

High impact information on SGCG

  • Screening for sarcoglycan-gene mutations in 50 of the 54 patients revealed mutations in 29 patients (58 percent): 17 (34 percent) had mutations in the alpha-sarcoglycan gene, 8 (16 percent) in the beta-sarcoglycan gene, and 4 (8 percent) in the gamma-sarcoglycan gene [10].
  • Patients whose biopsy specimens showed a deficiency of alpha-sarcoglycan on immunostaining were studied for mutations of the alpha-, beta-, and gamma-sarcoglycan genes with reverse transcription of muscle RNA, analysis involving single-strand conformation polymorphisms, and sequencing [10].
  • Here, it is shown that a mutation in the gene encoding the 35-kilodalton dystrophin-associated glycoprotein, gamma-sarcoglycan, is likely to be the primary genetic defect in this disorder [2].
  • The human gamma-sarcoglycan gene was mapped to chromosome 13q12, and deletions that alter its reading frame were identified in three families and one of four sporadic cases of SCARMD [2].
  • Although MAM shares typical features with other superantigens, direct interaction with CDR3-beta is a feature of nominal peptide antigens situated in the antigen groove of major histocompatibility complex (MHC) molecules rather than superantigens [11].

Chemical compound and disease context of SGCG


Biological context of SGCG


Anatomical context of SGCG

  • The hypothesis of bidirectional signalling between sarcoglycans and integrins could be supported by the identification of a skeletal and cardiac muscle filamin2 as a gamma-sarcoglycan, delta-sarcoglycan and, hypothetically, beta1 integrin interacting protein [18].
  • We have partially sequenced rabbit skeletal muscle gamma-sarcoglycan, an integral component of the dystrophin-glycoprotein complex [19].
  • In addition, we show that in normal muscle alpha-, beta-, and gamma-sarcoglycan constitute a tightly associated sarcolemma complex which cannot be disrupted by SDS treatment [19].
  • These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells [5].
  • Two functional domains on MAM are identified based on the ability of peptides encompassing these regions to inhibit lymphocyte proliferation by the intact MAM molecule [4].

Associations of SGCG with chemical compounds

  • This region of gamma-sarcoglycan, like beta-sarcoglycan, has a number of cysteine residues similar to those in epidermal growth factor cysteine-rich regions [17].
  • Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17 [5].
  • The crystal structure of a construct comprising its N-terminal MAM (meprin/A5/mu) and Ig domains was determined at 2.7 A resolution; this assigns the MAM fold to the jelly-roll family and reveals extensive interactions between the two domains, which form a rigid structural unit [20].
  • Treatment with lactacystin, a specific inhibitor of the proteasome, significantly decreased the degradation, indicating that the mutants lacking the MAM domain are degraded by the proteasome as misfolded proteins [21].
  • To explore the interactions of layer IV neurons and their thalamocortical input, we administered a mitotic inhibitor methylazoxymethanol acetate (MAM) intraperitoneally to time d pregnant hamsters on E14 when layer IV neurons are normally being generated in striate cortex [22].

Regulatory relationships of SGCG


Other interactions of SGCG


Analytical, diagnostic and therapeutic context of SGCG


  1. Sarcoglycanopathies are responsible for 68% of severe autosomal recessive limb-girdle muscular dystrophy in the Brazilian population. Vainzof, M., Passos-Bueno, M.R., Pavanello, R.C., Marie, S.K., Oliveira, A.S., Zatz, M. J. Neurol. Sci. (1999) [Pubmed]
  2. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. Noguchi, S., McNally, E.M., Ben Othmane, K., Hagiwara, Y., Mizuno, Y., Yoshida, M., Yamamoto, H., Bönnemann, C.G., Gussoni, E., Denton, P.H., Kyriakides, T., Middleton, L., Hentati, F., Ben Hamida, M., Nonaka, I., Vance, J.M., Kunkel, L.M., Ozawa, E. Science (1995) [Pubmed]
  3. Limb-girdle muscular dystrophy 2C: clinical aspects. Ben Hamida, M., Ben Hamida, C., Zouari, M., Belal, S., Hentati, F. Neuromuscul. Disord. (1996) [Pubmed]
  4. The sequence of the Mycoplasma arthritidis superantigen, MAM: identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. Cole, B.C., Knudtson, K.L., Oliphant, A., Sawitzke, A.D., Pole, A., Manohar, M., Benson, L.S., Ahmed, E., Atkin, C.L. J. Exp. Med. (1996) [Pubmed]
  5. Characterization of human T cells reactive with the Mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against V beta 17, the T cell receptor gene product expressed by a large fraction of MAM-reactive human T cells. Friedman, S.M., Crow, M.K., Tumang, J.R., Tumang, M., Xu, Y.Q., Hodtsev, A.S., Cole, B.C., Posnett, D.N. J. Exp. Med. (1991) [Pubmed]
  6. On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Samyn, N., van Haeren, C. Int. J. Legal Med. (2000) [Pubmed]
  7. FR discrimination training effects in SHR and microencephalic rats. Loupe, P.S., Schroeder, S.R., Tessel, R.E. Pharmacol. Biochem. Behav. (1995) [Pubmed]
  8. Mood disorders: diagnosis, treatment, and support from a patient perspective. Lewis, L. Psychopharmacology bulletin. (2001) [Pubmed]
  9. Manual Ability Measure (MAM-16): a preliminary report on a new patient-centred and task-oriented outcome measure of hand function. Chen, C.C., Granger, C.V., Peimer, C.A., Moy, O.J., Wald, S. Journal of hand surgery (Edinburgh, Lothian) (2005) [Pubmed]
  10. Mutations in the sarcoglycan genes in patients with myopathy. Duggan, D.J., Gorospe, J.R., Fanin, M., Hoffman, E.P., Angelini, C. N. Engl. J. Med. (1997) [Pubmed]
  11. Mycoplasma superantigen is a CDR3-dependent ligand for the T cell antigen receptor. Hodtsev, A.S., Choi, Y., Spanopoulou, E., Posnett, D.N. J. Exp. Med. (1998) [Pubmed]
  12. Transplacentally induced neuronal migration disorders: an animal model for the study of the epilepsies. Germano, I.M., Sperber, E.F. J. Neurosci. Res. (1998) [Pubmed]
  13. Hair and urine analysis: relative distribution of drugs and their metabolites. Bermejo Barrera, A.M., Strano Rossi, S. Forensic Sci. Int. (1995) [Pubmed]
  14. Beta-sarcoglycan gene mutations in Turkey. Balci, B., Wilichowski, E., Haliloğlu, G., Talim, B., Aurino, S., Kremer, E., Ebinger, F., Senbil, N., Anlar, B., Kale, G., Nigro, V., Topaloğlu, H., Bonnemann, C., Dinçer, P. Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology / edited by the Gaetano Conte Academy for the study of striated muscle diseases. (2004) [Pubmed]
  15. Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy (LGMD2C). Ben Othmane, K., Speer, M.C., Stauffer, J., Blel, S., Middleton, L., Ben Hamida, C., Etribi, A., Loeb, D., Hentati, F., Roses, A.D. Am. J. Hum. Genet. (1995) [Pubmed]
  16. Mild and severe muscular dystrophy caused by a single gamma-sarcoglycan mutation. McNally, E.M., Passos-Bueno, M.R., Bönnemann, C.G., Vainzof, M., de Sá Moreira, E., Lidov, H.G., Othmane, K.B., Denton, P.H., Vance, J.M., Zatz, M., Kunkel, L.M. Am. J. Hum. Genet. (1996) [Pubmed]
  17. Mutations that disrupt the carboxyl-terminus of gamma-sarcoglycan cause muscular dystrophy. McNally, E.M., Duggan, D., Gorospe, J.R., Bönnemann, C.G., Fanin, M., Pegoraro, E., Lidov, H.G., Noguchi, S., Ozawa, E., Finkel, R.S., Cruse, R.P., Angelini, C., Kunkel, L.M., Hoffman, E.P. Hum. Mol. Genet. (1996) [Pubmed]
  18. Evaluation of sarcoglycans, vinculin-talin-integrin system and filamin2 in alpha- and gamma-sarcoglycanopathy: an immunohistochemical study. Anastasi, G., Cutroneo, G., Trimarchi, F., Santoro, G., Bruschetta, D., Bramanti, P., Pisani, A., Favaloro, A. Int. J. Mol. Med. (2004) [Pubmed]
  19. Absence of gamma-sarcoglycan (35 DAG) in autosomal recessive muscular dystrophy linked to chromosome 13q12. Jung, D., Leturcq, F., Sunada, Y., Duclos, F., Tomé, F.M., Moomaw, C., Merlini, L., Azibi, K., Chaouch, M., Slaughter, C., Fardeau, M., Kaplan, J.C., Campbell, K.P. FEBS Lett. (1996) [Pubmed]
  20. Molecular analysis of receptor protein tyrosine phosphatase mu-mediated cell adhesion. Aricescu, A.R., Hon, W.C., Siebold, C., Lu, W., van der Merwe, P.A., Jones, E.Y. EMBO J. (2006) [Pubmed]
  21. Role of the COOH-terminal domains of meprin A in folding, secretion, and activity of the metalloendopeptidase. Tsukuba, T., Bond, J.S. J. Biol. Chem. (1998) [Pubmed]
  22. Cortical target depletion and ingrowth of geniculocortical axons: implications for cortical specification. Woo, T.U., Finlay, B.L. Cereb. Cortex (1996) [Pubmed]
  23. Confocal analysis of the dystrophin protein complex in muscular dystrophy. Draviam, R., Billington, L., Senchak, A., Hoffman, E.P., Watkins, S.C. Muscle Nerve (2001) [Pubmed]
  24. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nigro, V., de Sá Moreira, E., Piluso, G., Vainzof, M., Belsito, A., Politano, L., Puca, A.A., Passos-Bueno, M.R., Zatz, M. Nat. Genet. (1996) [Pubmed]
  25. The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Vainzof, M., Passos-Bueno, M.R., Canovas, M., Moreira, E.S., Pavanello, R.C., Marie, S.K., Anderson, L.V., Bonnemann, C.G., McNally, E.M., Nigro, V., Kunkel, L.M., Zatz, M. Hum. Mol. Genet. (1996) [Pubmed]
  26. The fourth component of the sarcoglycan complex. Yoshida, M., Noguchi, S., Wakabayashi, E., Piluso, G., Belsito, A., Nigro, V., Ozawa, E. FEBS Lett. (1997) [Pubmed]
  27. Sarcoglycan subcomplex in normal human smooth muscle: an immunohistochemical and molecular study. Anastasi, G., Cutroneo, G., Sidoti, A., Santoro, G., D'Angelo, R., Rizzo, G., Rinaldi, C., Giacobbe, O., Bramanti, P., Navarra, G., Amato, A., Favaloro, A. Int. J. Mol. Med. (2005) [Pubmed]
  28. Specific targeting of gene expression to a subset of human trabecular meshwork cells using the chitinase 3-like 1 promoter. Liton, P.B., Liu, X., Stamer, W.D., Challa, P., Epstein, D.L., Gonzalez, P. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  29. Severe gamma-sarcoglycanopathy caused by a novel missense mutation and a large deletion. Nowak, K.J., Walsh, P., Jacob, R.L., Johnsen, R.D., Peverall, J., McNally, E.M., Wilton, S.D., Kakulas, B.A., Laing, N.G. Neuromuscul. Disord. (2000) [Pubmed]
  30. Abnormalities in alpha-, beta- and gamma-sarcoglycan in patients with limb-girdle muscular dystrophy. Sewry, C.A., Taylor, J., Anderson, L.V., Ozawa, E., Pogue, R., Piccolo, F., Bushby, K., Dubowitz, V., Muntoni, F. Neuromuscul. Disord. (1996) [Pubmed]
  31. Biglycan binds to alpha- and gamma-sarcoglycan and regulates their expression during development. Rafii, M.S., Hagiwara, H., Mercado, M.L., Seo, N.S., Xu, T., Dugan, T., Owens, R.T., Hook, M., McQuillan, D.J., Young, M.F., Fallon, J.R. J. Cell. Physiol. (2006) [Pubmed]
WikiGenes - Universities