The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

ACO1  -  aconitate hydratase ACO1

Saccharomyces cerevisiae S288c

Synonyms: Aconitase, Aconitate hydratase, mitochondrial, Citrate hydro-lyase, GLU1, L8003.22, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ACO1

  • However, the severe deficiency in aconitase activity also suggests that oxidant stress may induce a self-amplifying cycle of oxidative damage and mitochondrial dysfunction, which may contribute to cellular toxicity [1].
  • Optimum in vivo folding of aconitase requires co-production of complete E. coli chaperonin machinery GroEL and GroES together [2].
  • Expression of yeast mitochondrial aconitase in Bacillus subtilis [3].
 

High impact information on ACO1

  • We have examined yeast mitochondrial aconitase, an 82 kDa monomeric Fe(4)S(4) cluster-containing enzyme, observed to aggregate in chaperonin-deficient mitochondria [4].
  • Aconitase, an iron-sulphur protein involved in iron homeostasis, was found to be deficient as well [5].
  • In this novel context, aconitase functions to stabilize mtDNA, perhaps by reversibly remodeling nucleoids to directly influence mitochondrial gene expression in response to changing cellular metabolism [6].
  • A genetic screen to isolate Saccharomyces cerevisiae strains bearing mutations in genes required for the conversion of IRP1 to c-aconitase led to the identification of a previously uncharacterized, essential gene, which we call CFD1 (cytosolic Fe-S cluster deficient) [7].
  • Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711 [8].
 

Biological context of ACO1

 

Anatomical context of ACO1

 

Associations of ACO1 with chemical compounds

  • The ACO1 gene, encoding mitochondrial aconitase of Saccharomyces cerevisiae, is required both for oxidative metabolism and for glutamate prototrophy [15].
  • Sake fermented using the aconitase gene (ACO1) disruptant contained a two-fold higher concentration of malate and a two-fold lower concentration of succinate than that made using the wild-type strain K901 [16].
  • Furthermore, we report for the first time that aconitase, methionine synthase and phosphoglycerate mutase have antigenic properties in C. albicans [17].
  • Yeast strains transformed with each of the three cDNAs were able to convert exogenous ACC to ethylene, the ACO1 strain exhibiting the highest activity in vivo and the ACO3 and ACO2 strains reaching 65% and 45% of ACO1 maximum activity, respectively [10].
  • In the absence of Yfh1p, activity of Fe-S-containing enzymes (aconitase, succinate dehydrogenase) is decreased, whereas the activity of a non-Fe-S-containing enzyme (malate dehydrogenase) is unaffected [18].
 

Other interactions of ACO1

 

Analytical, diagnostic and therapeutic context of ACO1

References

  1. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Bradley, J.L., Blake, J.C., Chamberlain, S., Thomas, P.K., Cooper, J.M., Schapira, A.H. Hum. Mol. Genet. (2000) [Pubmed]
  2. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Gupta, P., Aggarwal, N., Batra, P., Mishra, S., Chaudhuri, T.K. Int. J. Biochem. Cell Biol. (2006) [Pubmed]
  3. Expression of yeast mitochondrial aconitase in Bacillus subtilis. Serio, A.W., Sonenshein, A.L. J. Bacteriol. (2006) [Pubmed]
  4. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Chaudhuri, T.K., Farr, G.W., Fenton, W.A., Rospert, S., Horwich, A.L. Cell (2001) [Pubmed]
  5. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Rötig, A., de Lonlay, P., Chretien, D., Foury, F., Koenig, M., Sidi, D., Munnich, A., Rustin, P. Nat. Genet. (1997) [Pubmed]
  6. Mitochondrial DNA, aconitase 'wraps' it up. Shadel, G.S. Trends Biochem. Sci. (2005) [Pubmed]
  7. A novel eukaryotic factor for cytosolic Fe-S cluster assembly. Roy, A., Solodovnikova, N., Nicholson, T., Antholine, W., Walden, W.E. EMBO J. (2003) [Pubmed]
  8. Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711. Pitula, J.S., Deck, K.M., Clarke, S.L., Anderson, S.A., Vasanthakumar, A., Eisenstein, R.S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. The aconitase function of iron regulatory protein 1. Genetic studies in yeast implicate its role in iron-mediated redox regulation. Narahari, J., Ma, R., Wang, M., Walden, W.E. J. Biol. Chem. (2000) [Pubmed]
  10. Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. Bidonde, S., Ferrer, M.A., Zegzouti, H., Ramassamy, S., Latché, A., Pech, J.C., Hamilton, A.J., Grierson, D., Bouzayen, M. Eur. J. Biochem. (1998) [Pubmed]
  11. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. Wallace, M.A., Liou, L.L., Martins, J., Clement, M.H., Bailey, S., Longo, V.D., Valentine, J.S., Gralla, E.B. J. Biol. Chem. (2004) [Pubmed]
  12. A unique fungal lysine biosynthesis enzyme shares a common ancestor with tricarboxylic acid cycle and leucine biosynthetic enzymes found in diverse organisms. Irvin, S.D., Bhattacharjee, J.K. J. Mol. Evol. (1998) [Pubmed]
  13. Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Regev-Rudzki, N., Karniely, S., Ben-Haim, N.N., Pines, O. Mol. Biol. Cell (2005) [Pubmed]
  14. Microbody of n-alkane-grown yeast. Enzyme localization in the isolated microbody. Kawamoto, S., Tanaka, A., Yamamura, M., Teranishi, Y., Fukui, S. Arch. Microbiol. (1977) [Pubmed]
  15. The Saccharomyces cerevisiae RTG2 gene is a regulator of aconitase expression under catabolite repression conditions. Vélot, C., Haviernik, P., Lauquin, G.J. Genetics (1996) [Pubmed]
  16. Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. Arikawa, Y., Kobayashi, M., Kodaira, R., Shimosaka, M., Muratsubaki, H., Enomoto, K., Okazaki, M. J. Biosci. Bioeng. (1999) [Pubmed]
  17. Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Pardo, M., Ward, M., Pitarch, A., Sánchez, M., Nombela, C., Blackstock, W., Gil, C. Electrophoresis (2000) [Pubmed]
  18. Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis. Chen, O.S., Hemenway, S., Kaplan, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  19. Yeast alpha-isopropylmalate isomerase. Factors affecting stability and enzyme activity. Bigelis, R., Umbarger, H.E. J. Biol. Chem. (1976) [Pubmed]
  20. Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica. Wang, H., Le Clainche, A., Le Dall, M.T., Wache, Y., Pagot, Y., Belin, J.M., Gaillardin, C., Nicaud, J.M. Yeast (1998) [Pubmed]
  21. Metabolic changes in Saccharomyces cerevisiae strains lacking citrate synthases. Kispal, G., Rosenkrantz, M., Guarente, L., Srere, P.A. J. Biol. Chem. (1988) [Pubmed]
  22. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Gangloff, S.P., Marguet, D., Lauquin, G.J. Mol. Cell. Biol. (1990) [Pubmed]
  23. The aconitase of yeast. II. Crystallization and general properties of yeast aconitase. Suzuki, T., Yamazaki, O., Nara, K., Akiyama, S., Nakao, Y. J. Biochem. (1975) [Pubmed]
 
WikiGenes - Universities