The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Radiation Pneumonitis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Radiation Pneumonitis


High impact information on Radiation Pneumonitis


Chemical compound and disease context of Radiation Pneumonitis


Biological context of Radiation Pneumonitis


Anatomical context of Radiation Pneumonitis


Gene context of Radiation Pneumonitis

  • PURPOSE: To investigate the expression of a new fibrogenic cytokine the connective tissue growth factor (CTGF) in intestinal radiation fibrosis and to characterize the mesenchymal cell subtypes involved in CTGF synthesis and collagen deposition [15].
  • Analysis of a panel of circulating cytokines with different putative functions in radiation pulmonary injury identified IL-1alpha and IL-6 as early circulating cytokine markers for radiation pneumonitis [18].
  • The pattern of changes of MCP-1, E-selectin, L-selectin, TGF-beta1, and bFGF varied, but none of these cytokines correlated with radiation pneumonitis [18].
  • Then, in striking contrast to the other two cytokines, an increase in TGF-beta2 mRNA occurred at around 120 days and correlated with the detection of organizing alveolitis/radiation fibrosis and mortality [19].
  • CONCLUSION: Early variations of circulating IL-6 and IL-10 levels during 3D-CRT are significantly associated with the risk of radiation pneumonitis [1].

Analytical, diagnostic and therapeutic context of Radiation Pneumonitis


  1. Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. Arpin, D., Perol, D., Blay, J.Y., Falchero, L., Claude, L., Vuillermoz-Blas, S., Martel-Lafay, I., Ginestet, C., Alberti, L., Nosov, D., Etienne-Mastroianni, B., Cottin, V., Perol, M., Guerin, J.C., Cordier, J.F., Carrie, C. J. Clin. Oncol. (2005) [Pubmed]
  2. Phase II multicenter study of induction chemotherapy followed by concurrent efaproxiral (RSR13) and thoracic radiotherapy for patients with locally advanced non-small-cell lung cancer. Choy, H., Nabid, A., Stea, B., Scott, C., Roa, W., Kleinberg, L., Ayoub, J., Smith, C., Souhami, L., Hamburg, S., Spanos, W., Kreisman, H., Boyd, A.P., Cagnoni, P.J., Curran, W.J. J. Clin. Oncol. (2005) [Pubmed]
  3. Severe hyperkalemia as a complication of timolol, a topically applied beta-adrenergic antagonist. Swenson, E.R. Arch. Intern. Med. (1986) [Pubmed]
  4. IL-2 production by myofibroblasts from post-radiation fibrosis in breast cancer patients. Alileche, A., Han, D., Plaisance, S., Assier, E., Sahraoui, Y., Clemanceau, C., Metivier, D., Brouty-Boyer, D., Jasmin, C., Azzarone, B. Int. Immunol. (1994) [Pubmed]
  5. CCL22 and CCL17 in rat radiation pneumonitis and in human idiopathic pulmonary fibrosis. Inoue, T., Fujishima, S., Ikeda, E., Yoshie, O., Tsukamoto, N., Aiso, S., Aikawa, N., Kubo, A., Matsushima, K., Yamaguchi, K. Eur. Respir. J. (2004) [Pubmed]
  6. Recombinant soluble transforming growth factor beta type II receptor ameliorates radiation enteropathy in mice. Zheng, H., Wang, J., Koteliansky, V.E., Gotwals, P.J., Hauer-Jensen, M. Gastroenterology (2000) [Pubmed]
  7. Basic fibroblast growth factor does not protect against classical radiation pneumonitis in two strains of mice. Tee, P.G., Travis, E.L. Cancer Res. (1995) [Pubmed]
  8. Residual damage in mouse lungs at long intervals after cyclophosphamide treatment. Travis, E.L., Bucci, L., Fang, M.Z. Cancer Res. (1990) [Pubmed]
  9. Total-lung irradiation in the treatment of pulmonary metastases. Baeza, M.R., Barkley, H.T., Fernandez, C.H. Radiology. (1975) [Pubmed]
  10. Radiation pneumonitis imaged with indium-111-pentetreotide. Valdés Olmos, R.A., van Zandwijk, N., Boersma, L.J., Hoefnagel, C.A., Baas, P., Baars, J.B., Muller, S.H., Lebesque, J.V. J. Nucl. Med. (1996) [Pubmed]
  11. Prospective evaluation of concurrent paclitaxel and radiation therapy after adjuvant doxorubicin and cyclophosphamide chemotherapy for Stage II or III breast cancer. Burstein, H.J., Bellon, J.R., Galper, S., Lu, H.M., Kuter, I., Taghian, A.G., Wong, J., Gelman, R., Bunnell, C.A., Parker, L.M., Garber, J.E., Winer, E.P., Harris, J.R., Powell, S.N. Int. J. Radiat. Oncol. Biol. Phys. (2006) [Pubmed]
  12. Captopril reduces collagen and mast cell accumulation in irradiated rat lung. Ward, W.F., Molteni, A., Ts'ao, C.H., Hinz, J.M. Int. J. Radiat. Oncol. Biol. Phys. (1990) [Pubmed]
  13. Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. Finkelstein, J.N., Johnston, C.J., Baggs, R., Rubin, P. Int. J. Radiat. Oncol. Biol. Phys. (1994) [Pubmed]
  14. Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Bourgier, C., Haydont, V., Milliat, F., François, A., Holler, V., Lasser, P., Bourhis, J., Mathé, D., Vozenin-Brotons, M.C. Gut (2005) [Pubmed]
  15. Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. Vozenin-Brotons, M.C., Milliat, F., Sabourin, J.C., de Gouville, A.C., François, A., Lasser, P., Morice, P., Haie-Meder, C., Lusinchi, A., Antoun, S., Bourhis, J., Mathé, D., Girinsky, T., Aigueperse, J. Int. J. Radiat. Oncol. Biol. Phys. (2003) [Pubmed]
  16. Unilateral radiation pneumonitis in sheep: physiological changes and bronchoalveolar lavage. Tillman, B.F., Loyd, J.E., Malcolm, A.W., Holm, B.A., Brigham, K.L. J. Appl. Physiol. (1989) [Pubmed]
  17. Imaging of nasopharyngeal carcinoma with Tc-99m MIBI. Pui, M.H., Du, J.Q., Yueh, T.C., Zeng, S.Q. Clinical nuclear medicine. (1998) [Pubmed]
  18. Radiation pneumonitis and early circulatory cytokine markers. Chen, Y., Williams, J., Ding, I., Hernady, E., Liu, W., Smudzin, T., Finkelstein, J.N., Rubin, P., Okunieff, P. Seminars in radiation oncology. (2002) [Pubmed]
  19. Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Epperly, M.W., Travis, E.L., Sikora, C., Greenberger, J.S. Biol. Blood Marrow Transplant. (1999) [Pubmed]
  20. Fluorine-18 FDG dual-head gamma camera coincidence imaging of radiation pneumonitis. Lin, P., Delaney, G., Chu, J., Kiat, H., Pocock, N. Clinical nuclear medicine. (2000) [Pubmed]
WikiGenes - Universities