The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs2406  -  hypothetical protein

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs2406

 

High impact information on ECs2406

  • Unlike protection against cumene hydroperoxide, protection afforded by ahpC against RNI was independent of the reducing flavoprotein, AhpF [6].
  • The PutA flavoprotein from Escherichia coli plays multiple roles in proline catabolism by functioning as a membrane-associated bi-functional enzyme and a transcriptional repressor of proline utilization genes [7].
  • Primary structure, import, and assembly of the yeast homolog of succinate dehydrogenase flavoprotein [8].
  • Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein [9].
  • The enzymes, which are encoded by different regulons, include members that belong to the tricarboxylic acid cycle, the glyoxylate shunt, the pathway for fatty acid degradation, several dehydrogenases of the flavoprotein class, and the cytochrome o oxidase complex [10].
 

Chemical compound and disease context of ECs2406

 

Biological context of ECs2406

 

Anatomical context of ECs2406

 

Associations of ECs2406 with chemical compounds

  • Purified MioC has a UV-visible spectrum characteristic of a flavoprotein and contains flavin mononucleotide [24].
  • Rates obtained for either the reduction of the unactivated flavoprotein by pyruvate or its reoxidation by ferricyanide in single turnover experiments are much slower than the rates predicted by observed turnover in initial velocity studies, in some cases by more than 2 orders of magnitude [12].
  • This enzyme is a homodimeric flavoprotein with one FMN cofactor per monomer and catalyzes reduction of nitrocompounds using NADPH [14].
  • In addition, fully active SiR can be reconstituted by incubation of the octameric sulfite reductase flavoprotein with recombinant SiR-HP [25].
  • Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit [26].
 

Other interactions of ECs2406

 

Analytical, diagnostic and therapeutic context of ECs2406

  • The recombinant protein was purified by affinity chromatography on guazatine-Sepharose 4B and was shown to be a flavoprotein able to oxidize Spm, norspermine, and N1-acetylspermine with a pH optimum at 8 [29].
  • The purified recombinant protein (recEh34) has a molecular mass of about 35 kDa upon SDS/PAGE analysis, exhibits a flavoprotein-like absorption spectrum and contains 1 mol of non-covalently bound FMN per mol of protein [30].
  • The FMN-dependent flavoprotein nitroreductase from Escherichia coli B (NTR) is used in cancer chemotherapy to activate a range of prodrugs [31].
  • Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli [32].
  • We conclude that differences on the surface of the P450s reflect unique and specific information essential for the recognition needed to establish reactions of intermolecular electron transfer from the flavoprotein CPR [33].

References

  1. Flavin-linked peroxide reductases: protein-sulfenic acids and the oxidative stress response. Claiborne, A., Ross, R.P., Parsonage, D. Trends Biochem. Sci. (1992) [Pubmed]
  2. High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Fisher, C.W., Shet, M.S., Caudle, D.L., Martin-Wixtrom, C.A., Estabrook, R.W. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  3. Purification and characterization of a NADP+/NADPH-specific flavoprotein that is overexpressed in FdI- strains of Azotobacter vinelandii. Isas, J.M., Burgess, B.K. J. Biol. Chem. (1994) [Pubmed]
  4. Glycine oxidase from Bacillus subtilis. Characterization of a new flavoprotein. Job, V., Marcone, G.L., Pilone, M.S., Pollegioni, L. J. Biol. Chem. (2002) [Pubmed]
  5. Cloning, sequencing, and expression of the genes encoding subunits of Paracoccus denitrificans electron transfer flavoprotein. Bedzyk, L.A., Escudero, K.W., Gill, R.E., Griffin, K.J., Frerman, F.E. J. Biol. Chem. (1993) [Pubmed]
  6. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Chen, L., Xie, Q.W., Nathan, C. Mol. Cell (1998) [Pubmed]
  7. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. Lee, Y.H., Nadaraia, S., Gu, D., Becker, D.F., Tanner, J.J. Nat. Struct. Biol. (2003) [Pubmed]
  8. Primary structure, import, and assembly of the yeast homolog of succinate dehydrogenase flavoprotein. Schülke, N., Blobel, G., Pain, D. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  9. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Stuehr, D.J., Cho, H.J., Kwon, N.S., Weise, M.F., Nathan, C.F. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  10. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Iuchi, S., Lin, E.C. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  11. The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. A new model for the protein structure. Eschenbrenner, M., Covès, J., Fontecave, M. J. Biol. Chem. (1995) [Pubmed]
  12. Kinetic studies of the lipid-activated pyruvate oxidase flavoprotein of Escherichia coli. Mather, M.W., Gennis, R.B. J. Biol. Chem. (1985) [Pubmed]
  13. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression. Isas, J.M., Yannone, S.M., Burgess, B.K. J. Biol. Chem. (1995) [Pubmed]
  14. Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. Kobori, T., Sasaki, H., Lee, W.C., Zenno, S., Saigo, K., Murphy, M.E., Tanokura, M. J. Biol. Chem. (2001) [Pubmed]
  15. Molecular characterization of lantibiotic-synthesizing enzyme EpiD reveals a function for bacterial Dfp proteins in coenzyme A biosynthesis. Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., Steinbacher, S. J. Biol. Chem. (2000) [Pubmed]
  16. Expression and characterization of two pathogenic mutations in human electron transfer flavoprotein. Salazar, D., Zhang, L., deGala, G.D., Frerman, F.E. J. Biol. Chem. (1997) [Pubmed]
  17. Isolation and nucleotide sequence of the Saccharomyces cerevisiae gene for the succinate dehydrogenase flavoprotein subunit. Robinson, K.M., Lemire, B.D. J. Biol. Chem. (1992) [Pubmed]
  18. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. Ostrowski, J., Barber, M.J., Rueger, D.C., Miller, B.E., Siegel, L.M., Kredich, N.M. J. Biol. Chem. (1989) [Pubmed]
  19. Reconstitution of the fatty acid hydroxylation function of cytochrome P-450BM-3 utilizing its individual recombinant hemo- and flavoprotein domains. Boddupalli, S.S., Oster, T., Estabrook, R.W., Peterson, J.A. J. Biol. Chem. (1992) [Pubmed]
  20. Plant-type ferredoxin-NADP+ reductases: a basal structural framework and a multiplicity of functions. Arakaki, A.K., Ceccarelli, E.A., Carrillo, N. FASEB J. (1997) [Pubmed]
  21. Isolation and characterization of a Saccharomyces cerevisiae mutant disrupted for the succinate dehydrogenase flavoprotein subunit. Robinson, K.M., von Kieckebusch-Gück, A., Lemire, B.D. J. Biol. Chem. (1991) [Pubmed]
  22. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase. Koland, J.G., Miller, M.J., Gennis, R.B. Biochemistry (1984) [Pubmed]
  23. Trypanothione reductase of Trypanosoma congolense: gene isolation, primary sequence determination, and comparison to glutathione reductase. Shames, S.L., Kimmel, B.E., Peoples, O.P., Agabian, N., Walsh, C.T. Biochemistry (1988) [Pubmed]
  24. MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro. Birch, O.M., Hewitson, K.S., Fuhrmann, M., Burgdorf, K., Baldwin, J.E., Roach, P.L., Shaw, N.M. J. Biol. Chem. (2000) [Pubmed]
  25. A simplifed functional version of the Escherichia coli sulfite reductase. Zeghouf, M., Fontecave, M., Coves, J. J. Biol. Chem. (2000) [Pubmed]
  26. Subunit location of the iron-sulfur clusters in fumarate reductase from Escherichia coli. Johnson, M.K., Kowal, A.T., Morningstar, J.E., Oliver, M.E., Whittaker, K., Gunsalus, R.P., Ackrell, B.A., Cecchini, G. J. Biol. Chem. (1988) [Pubmed]
  27. An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum. Reynolds, C.M., Meyer, J., Poole, L.B. Biochemistry (2002) [Pubmed]
  28. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Poole, L.B. Arch. Biochem. Biophys. (2005) [Pubmed]
  29. Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Tavladoraki, P., Rossi, M.N., Saccuti, G., Perez-Amador, M.A., Polticelli, F., Angelini, R., Federico, R. Plant Physiol. (2006) [Pubmed]
  30. Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica. Bruchhaus, I., Richter, S., Tannich, E. Biochem. J. (1998) [Pubmed]
  31. Crystal structure of FMN-dependent nitroreductase from Escherichia coli B: a prodrug-activating enzyme. Parkinson, G.N., Skelly, J.V., Neidle, S. J. Med. Chem. (2000) [Pubmed]
  32. Crystallization and preliminary crystallographic analysis of the proline dehydrogenase domain of the multifunctional PutA flavoprotein from Escherichia coli. Nadaraia, S., Lee, Y.H., Becker, D.F., Tanner, J.J. Acta Crystallogr. D Biol. Crystallogr. (2001) [Pubmed]
  33. An enzymatically active chimeric protein containing the hydrophilic form of NADPH-cytochrome P450 reductase fused to the membrane-binding domain of cytochrome b5. Gilep, A.A., Guryev, O.L., Usanov, S.A., Estabrook, R.W. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
 
WikiGenes - Universities