The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Medicago

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Medicago

 

High impact information on Medicago

 

Chemical compound and disease context of Medicago

  • L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti [10].
  • The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules [11].
  • In Sinorhizobium meliloti, which can form a nitrogen-fixing root nodule symbiosis with Medicago spp., PC can be formed by two entirely different biosynthetic pathways, either the PE methylation pathway or the recently discovered PC synthase pathway [12].
  • In addition, we have constructed a guaB mutant derived from Sinorhizobium meliloti 1021, and shown that, unlike R. tropici, the guaB S. meliloti mutant is auxotrophic for guanine and induces wild-type nodules on alfalfa and Medicago truncatula [13].
  • From a pool of Medicago truncatula mutants--obtained by gamma-irradiation or ethyl methanesulfonate mutagenesis--impaired in symbiosis with the N-fixing bacterium Sinorhizobium meliloti, new mutants are described and genetically analysed, and for already reported mutants, complementary data are given on their phenotypic and genetic analysis [14].
 

Biological context of Medicago

  • cDNA clones containing sequence similarity to the multifunctional vertebrate protein disulfide-isomerase (PDI, EC 5.3.4.1) were isolated from an alfalfa (Medicago sativa L.) cDNA library by screening with a cDNA sequence encoding human PDI [15].
  • Culturing leaf protoplast-derived cells of the embryogenic alfalfa (Medicago sativa subsp. varia A2) genotype in the presence of low (1 microM) or high (10 microM) 2, 4-dichlorophenoxyacetic acid (2,4-D) concentrations results in different cell types [16].
  • Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments [17].
  • Ethyl methanesulfonate mutagenesis of the model legume Medicago truncatula has previously identified several genes required for early steps in nodulation [18].
  • Long-distance auxin transport was examined in Medicago truncatula and in its supernodulating mutant sunn (super numeric nodules) to investigate the regulation of auxin transport during autoregulation of nodulation (AON) [19].
 

Anatomical context of Medicago

  • Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids [20].
  • G-protein from Medicago sativa: functional association to photoreceptors [21].
  • Stress responses in alfalfa (Medicago sativa L.). 8. Cis-elements and trans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts [22].
  • We further examined nematode feeding sites for the expression of two genes involved in nodule formation, ccs52 (encodes a mitotic inhibitor) and ENOD40 (encodes an early, nodulation mitogen), and found transcripts of both genes to be present in and around giant cells induced in Medicago [23].
  • Oxygen consumption and Na+,K+-ATPase(EC 3.6.1.3)-dependent (ouabain-sensitive) and -independent respiration were measured for duodenal mucosa biopsies from 10-month-old sheep given two levels of digestible energy (DE) intake (7.6-7.7 and 14.8 MJ lucerne (Medicago sativa) pellets/d) and following 48 h of starvation [24].
 

Associations of Medicago with chemical compounds

  • In aqueous solution, Medicago savita chalcone isomerase (CHI) enhances the reaction rate for the unimolecular rearrangement of chalcone (CHN) into flavanone by seven orders of magnitude [25].
  • Chalcone O-methyltransferase (ChOMT) and isoflavone O-methyltransferase (IOMT) are S-adenosyl-l-methionine (SAM) dependent plant natural product methyltransferases involved in secondary metabolism in Medicago sativa (alfalfa) [26].
  • There is strong evidence for a palaeoduplication event that affected both Glycine (a millettioid) and Medicago (from the IRL clade) [27].
  • Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2'-dihydroxy-4'-methoxyisoflavanol dehydratase [28].
  • We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max [29].
 

Gene context of Medicago

  • Previously, two cdc2 homologs, cdc2MsA and cdc2MsB, have been identified in alfalfa (Medicago sativa) [30].
  • We have isolated a cDNA clone (cdc2Ms) from alfalfa (Medicago sativa L.) that is homologous to the yeast cdc2/CDC28 genes [31].
  • Furthermore, our data show that addition of the Medicago CDKC;1-CYCT;1 heterodimer completely restored the transcriptional activity of a HeLa nuclear extract depleted of endogeneous CDK9 kinase complexes [32].
  • The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%) [33].
  • The 9.2-kb fragment complemented nodA-, nodB-, and nodC- mutants of R. meliloti to the Nod+ phenotype on Medicago sativa, M. truncatula, and Trigonella foenum-graecum [34].
 

Analytical, diagnostic and therapeutic context of Medicago

References

  1. Plant glutamine synthetase complements a glnA mutation in Escherichia coli. DasSarma, S., Tischer, E., Goodman, H.M. Science (1986) [Pubmed]
  2. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. Savouré, A., Magyar, Z., Pierre, M., Brown, S., Schultze, M., Dudits, D., Kondorosi, A., Kondorosi, E. EMBO J. (1994) [Pubmed]
  3. From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Rodríguez-Llorente, I.D., Pérez-Hormaeche, J., Mounadi, K.E., Dary, M., Caviedes, M.A., Cosson, V., Kondorosi, A., Ratet, P., Palomares, A.J. Plant J. (2004) [Pubmed]
  4. Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. Roudier, F., Fedorova, E., Györgyey, J., Feher, A., Brown, S., Kondorosi, A., Kondorosi, E. Plant J. (2000) [Pubmed]
  5. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. Szeto, W.W., Nixon, B.T., Ronson, C.W., Ausubel, F.M. J. Bacteriol. (1987) [Pubmed]
  6. Human 76p: A new member of the gamma-tubulin-associated protein family. Fava, F., Raynaud-Messina, B., Leung-Tack, J., Mazzolini, L., Li, M., Guillemot, J.C., Cachot, D., Tollon, Y., Ferrara, P., Wright, M. J. Cell Biol. (1999) [Pubmed]
  7. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A., Wang, X. Plant Cell (2005) [Pubmed]
  8. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Oldroyd, G.E., Engstrom, E.M., Long, S.R. Plant Cell (2001) [Pubmed]
  9. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Catoira, R., Galera, C., de Billy, F., Penmetsa, R.V., Journet, E.P., Maillet, F., Rosenberg, C., Cook, D., Gough, C., Dénarié, J. Plant Cell (2000) [Pubmed]
  10. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. Keshavan, N.D., Chowdhary, P.K., Haines, D.C., González, J.E. J. Bacteriol. (2005) [Pubmed]
  11. The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. Dupont, L., Garcia, I., Poggi, M.C., Alloing, G., Mandon, K., Le Rudulier, D. J. Bacteriol. (2004) [Pubmed]
  12. Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. López-Lara, I.M., Sohlenkamp, C., Geiger, O. Mol. Plant Microbe Interact. (2003) [Pubmed]
  13. GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction. Collavino, M., Riccillo, P.M., Grasso, D.H., Crespi, M., Aguilar, M. Mol. Plant Microbe Interact. (2005) [Pubmed]
  14. Characterisation of new symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. Morandi, D., Prado, E., Sagan, M., Duc, G. Mycorrhiza (2005) [Pubmed]
  15. Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C. Shorrosh, B.S., Dixon, R.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  16. The Role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Pasternak, T.P., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., Van Onckelen, H.A., Dudits, D., Fehér, A. Plant Physiol. (2002) [Pubmed]
  17. Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Imin, N., Nizamidin, M., Daniher, D., Nolan, K.E., Rose, R.J., Rolfe, B.G. Plant Physiol. (2005) [Pubmed]
  18. LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections. Kuppusamy, K.T., Endre, G., Prabhu, R., Penmetsa, R.V., Veereshlingam, H., Cook, D.R., Dickstein, R., Vandenbosch, K.A. Plant Physiol. (2004) [Pubmed]
  19. Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. van Noorden, G.E., Ross, J.J., Reid, J.B., Rolfe, B.G., Mathesius, U. Plant Physiol. (2006) [Pubmed]
  20. Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Melo, P.M., Lima, L.M., Santos, I.M., Carvalho, H.G., Cullimore, J.V. Plant Physiol. (2003) [Pubmed]
  21. G-protein from Medicago sativa: functional association to photoreceptors. Muschietti, J.P., Martinetto, H.E., Coso, O.A., Farber, M.D., Torres, H.N., Flawia, M.M. Biochem. J. (1993) [Pubmed]
  22. Stress responses in alfalfa (Medicago sativa L.). 8. Cis-elements and trans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Harrison, M.J., Choudhary, A.D., Dubery, I., Lamb, C.J., Dixon, R.A. Plant Mol. Biol. (1991) [Pubmed]
  23. Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Koltai, H., Dhandaydham, M., Opperman, C., Thomas, J., Bird, D. Mol. Plant Microbe Interact. (2001) [Pubmed]
  24. Influence of feed intake and starvation on the magnitude of Na+,K+-ATPase(EC 3.6.1.3)-dependent respiration in duodenal mucosa of sheep. McBride, B.W., Milligan, L.P. Br. J. Nutr. (1985) [Pubmed]
  25. Transition state stabilization by general acid catalysis, water expulsion, and enzyme reorganization in Medicago savita chalcone isomerase. Hur, S., Newby, Z.E., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  26. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Zubieta, C., He, X.Z., Dixon, R.A., Noel, J.P. Nat. Struct. Biol. (2001) [Pubmed]
  27. Legume comparative genomics: progress in phylogenetics and phylogenomics. Cronk, Q., Ojeda, I., Pennington, R.T. Curr. Opin. Plant Biol. (2006) [Pubmed]
  28. Conversion of vestitone to medicarpin in alfalfa (Medicago sativa L.) is catalyzed by two independent enzymes. Identification, purification, and characterization of vestitone reductase and 7,2'-dihydroxy-4'-methoxyisoflavanol dehydratase. Guo, L., Dixon, R.A., Paiva, N.L. J. Biol. Chem. (1994) [Pubmed]
  29. Isolation and characterization of the early nodule-specific protein homologue (Hev b 13), an allergenic lipolytic esterase from Hevea brasiliensis latex. Arif, S.A., Hamilton, R.G., Yusof, F., Chew, N.P., Loke, Y.H., Nimkar, S., Beintema, J.J., Yeang, H.Y. J. Biol. Chem. (2004) [Pubmed]
  30. Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Magyar, Z., Mészáros, T., Miskolczi, P., Deák, M., Fehér, A., Brown, S., Kondorosi, E., Athanasiadis, A., Pongor, S., Bilgin, M., Bakó, L., Koncz, C., Dudits, D. Plant Cell (1997) [Pubmed]
  31. Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Hirt, H., Páy, A., Györgyey, J., Bakó, L., Németh, K., Bögre, L., Schweyen, R.J., Heberle-Bors, E., Dudits, D. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  32. The Medicago CDKC;1-CYCLINT;1 kinase complex phosphorylates the carboxy-terminal domain of RNA polymerase II and promotes transcription. Fülöp, K., Pettkó-Szandtner, A., Magyar, Z., Miskolczi, P., Kondorosi, E., Dudits, D., Bakó, L. Plant J. (2005) [Pubmed]
  33. Light regulation of the abundance of mRNA encoding a nucleolin-like protein localized in the nucleoli of pea nuclei. Tong, C.G., Reichler, S., Blumenthal, S., Balk, J., Hsieh, H.L., Roux, S.J. Plant Physiol. (1997) [Pubmed]
  34. Sequence and analysis of the nodABC region of Rhizobium fredii USDA257, a nitrogen-fixing symbiont of soybean and other legumes. Krishnan, H.B., Pueppke, S.G. Mol. Plant Microbe Interact. (1991) [Pubmed]
  35. Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Nolan, K.E., Irwanto, R.R., Rose, R.J. Plant Physiol. (2003) [Pubmed]
  36. Transcriptome analysis of alfalfa glandular trichomes. Aziz, N., Paiva, N.L., May, G.D., Dixon, R.A. Planta (2005) [Pubmed]
  37. Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones. Fedorova, E., Redondo, F.J., Koshiba, T., Pueyo, J.J., de Felipe, M.R., Lucas, M.M. Mol. Plant Microbe Interact. (2005) [Pubmed]
  38. Molecular cloning and expression of alfalfa (Medicago sativa L.) vestitone reductase, the penultimate enzyme in medicarpin biosynthesis. Guo, L., Paiva, N.L. Arch. Biochem. Biophys. (1995) [Pubmed]
  39. Application of immunodiffusion to the identification of Rhizobium meliloti strains competing for nodulation on Medicago sativa. Sinha, R.C., Bromfield, E.S., Peterson, E.A. Antonie Van Leeuwenhoek (1984) [Pubmed]
 
WikiGenes - Universities