The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Crassostrea

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Crassostrea

 

High impact information on Crassostrea

  • In response to the neurohormone serotonin (5-hydroxytryptamine, 5-HT), prophase-arrested oocytes of the marine bivalve Crassostrea gigas (oyster) reinitiate meiosis, undergo germinal vesicle breakdown (GVBD), and are arrested again at metaphase I [5].
  • We report here the identification and functional characterization of Cg-Rel, a gene encoding the Crassostrea gigas homolog of Rel/NF-kappaB transcription factors found in insects and mammals [6].
  • Study of atrazine effects on Pacific oyster, Crassostrea gigas, haemocytes [7].
  • cDNA cloning and molecular identification of the major oyster allergen from the Pacific oyster Crassostrea gigas [8].
  • Cholinesterases from the common oyster (Crassostrea gigas). Evidence for the presence of a soluble acetylcholinesterase insensitive to organophosphate and carbamate inhibitors [9].
 

Chemical compound and disease context of Crassostrea

 

Biological context of Crassostrea

 

Anatomical context of Crassostrea

 

Associations of Crassostrea with chemical compounds

  • Purification and characterization studies of cadmium-binding proteins from the American oyster, Crassostrea virginica [19].
  • The negative chronotropic effects of ACh, but not of 4-ketoamyltrimethylammonium, were potentiated by DMSO (1-5 microliters/ml) on the isolated heart of the oyster Crassostrea virginica [20].
  • Molecular data support a later divergence of the tropical Pacific Saccostrea from a common ancestor of the Atlantic Crassostrea species [21].
  • Techniques for delivery of arachidonic acid to Pacific oyster, Crassostrea gigas, spat [22].
  • Alanopine and strombine are novel imino acids produced by a dehydrogenase found in the adductor muscle of the oyster, Crassostrea gigas [23].
 

Gene context of Crassostrea

  • Molecular characterization of a cDNA encoding putative vitellogenin from the Pacific oyster Crassostrea gigas [24].
  • Structure and expression of mGDF, a new member of the transforming growth factor-beta superfamily in the bivalve mollusc Crassostrea gigas [25].
  • 1. Influence on the Biochemical and Fatty Acid Compositions of Raw Oysters (Crassostrea gigas) [26].
  • Two BHC bioconcentration studies were conducted with the oyster, Crassostrea virginica, and pinfish [27].
  • Insulin-like system and growth regulation in the Pacific oyster Crassostrea gigas: hrIGF-1 effect on protein synthesis of mantle edge cells and expression of an homologous insulin receptor-related receptor [28].
 

Analytical, diagnostic and therapeutic context of Crassostrea

  • Two low-molecular-mass cadmium-induced, cadmium-, zinc-binding proteins were purified from the oyster Crassostrea virginica using procedures that included acetone precipitation, Sephadex gel chromatography, and anion-exchange and reverse-phase high-performance liquid chromatography [29].
  • However, the results of competitive ELISA inhibition experiments suggest that Tur c 1 has an IgE-binding epitope in the C-terminal region which is dissimilar to those proposed for Cra g 1 (the oyster Crassostrea gigas allergen) and Pen i 1 (the shrimp Penaeus indicus allergen) [30].

References

  1. Ecological relationship between Vibrio parahaemolyticus and agar-digesting vibrios as evidenced by bacteriophage susceptibility patterns. Baross, J.A., Liston, J., Morita, R.Y. Appl. Environ. Microbiol. (1978) [Pubmed]
  2. Promoters from Drosophila heat shock protein and cytomegalovirus drive transient expression of luciferase introduced by particle bombardment into embryos of the oyster Crassostrea gigas. Cadoret, J.P., Boulo, V., Gendreau, S., Mialhe, E. J. Biotechnol. (1997) [Pubmed]
  3. Aspects of mitochondrial activity in the estuarine bivalves Crassostrea rhizophorae and Lucina pectinatus: a comparative approach. Nascimento, I.A., Erlon, L., Rodrigues, A. Revista brasileira de pesquisas médicas e biológicas. (1976) [Pubmed]
  4. Phototoxicity of pyrene and benzo[a]pyrene to embryo-larval stages of the Pacific oyster Crassostrea gigas. Lyons, B.P., Pascoe, C.K., McFadzen, I.R. Mar. Environ. Res. (2002) [Pubmed]
  5. Change in intracellular Ca2+ is not involved in serotonin-induced meiosis reinitiation from the first prophase in oocytes of the marine bivalve Crassostrea gigas. Kyozuka, K., Deguchi, R., Yoshida, N., Yamashita, M. Dev. Biol. (1997) [Pubmed]
  6. Cg-Rel, the first Rel/NF-kappaB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas. Montagnani, C., Kappler, C., Reichhart, J.M., Escoubas, J.M. FEBS Lett. (2004) [Pubmed]
  7. Study of atrazine effects on Pacific oyster, Crassostrea gigas, haemocytes. Gagnaire, B., Renault, T., Bouilly, K., Lapegue, S., Thomas-Guyon, H. Curr. Pharm. Des. (2003) [Pubmed]
  8. cDNA cloning and molecular identification of the major oyster allergen from the Pacific oyster Crassostrea gigas. Leung, P.S., Chu, K.H. Clin. Exp. Allergy (2001) [Pubmed]
  9. Cholinesterases from the common oyster (Crassostrea gigas). Evidence for the presence of a soluble acetylcholinesterase insensitive to organophosphate and carbamate inhibitors. Bocquene, G., Roig, A., Fournier, D. FEBS Lett. (1997) [Pubmed]
  10. Use of diacetyl to reduce the load of Vibrio vulnificus in the Eastern oyster, Crassostrea virginica. Birkenhauer, J.M., Oliver, J.D. J. Food Prot. (2003) [Pubmed]
  11. Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses. Cherkasov, A.S., Biswas, P.K., Ridings, D.M., Ringwood, A.H., Sokolova, I.M. J. Exp. Biol. (2006) [Pubmed]
  12. Apoptosis by RGD-containing peptides observed in hemocytes of the Pacific oyster, Crassostrea gigas. Terahara, K., Takahashi, K.G., Mori, K. Dev. Comp. Immunol. (2003) [Pubmed]
  13. Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Piano, A., Asirelli, C., Caselli, F., Fabbri, E. Cell Stress Chaperones (2002) [Pubmed]
  14. A review of the effects of bromate on aquatic organisms and toxicity of bromate to oyster (Crassostrea gigas) embryos. Hutchinson, T.H., Hutchings, M.J., Moore, K.W. Ecotoxicol. Environ. Saf. (1997) [Pubmed]
  15. The bioconcentration and metabolism of chlorpyrifos by the eastern oyster, Crassostrea virginica. Woodburn, K.B., Hansen, S.C., Roth, G.A., Strauss, K. Environ. Toxicol. Chem. (2003) [Pubmed]
  16. Noradrenaline modulates hemocyte reactive oxygen species production via beta-adrenergic receptors in the oyster Crassostrea gigas. Lacoste, A., Malham, S.K., Cueff, A., Poulet, S.A. Dev. Comp. Immunol. (2001) [Pubmed]
  17. Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae). Sokolova, I.M., Ringwood, A.H., Johnson, C. Aquat. Toxicol. (2005) [Pubmed]
  18. A study of steady state and kinetic regulation of chloride ion and osmotic pressure in hemolymph of oysters, Crassostrea virginica, exposed to tri-n-butyltin. Bokman, E., Laughlin, R.B. Arch. Environ. Contam. Toxicol. (1989) [Pubmed]
  19. Purification and characterization studies of cadmium-binding proteins from the American oyster, Crassostrea virginica. Fowler, B.A., Engel, D.W., Brouwer, M. Environ. Health Perspect. (1986) [Pubmed]
  20. Competitive inhibition by dimethylsulfoxide of molluscan and vertebrate acetylcholinesterase. Plummer, J.M., Greenberg, M.J., Lehman, H.K., Watts, J.A. Biochem. Pharmacol. (1983) [Pubmed]
  21. Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Littlewood, D.T. Mol. Phylogenet. Evol. (1994) [Pubmed]
  22. Techniques for delivery of arachidonic acid to Pacific oyster, Crassostrea gigas, spat. Seguineau, C., Soudant, P., Moal, J., Delaporte, M., Miner, P., Quéré, C., Samain, J.F. Lipids (2005) [Pubmed]
  23. Alanopine and strombine are novel imino acids produced by a dehydrogenase found in the adductor muscle of the oyster, Crassostrea gigas. Fields, J.H., Eng, A.K., Ramsden, W.D., Hochachka, P.W., Weinstein, B. Arch. Biochem. Biophys. (1980) [Pubmed]
  24. Molecular characterization of a cDNA encoding putative vitellogenin from the Pacific oyster Crassostrea gigas. Matsumoto, T., Nakamura, A.M., Mori, K., Kayano, T. Zool. Sci. (2003) [Pubmed]
  25. Structure and expression of mGDF, a new member of the transforming growth factor-beta superfamily in the bivalve mollusc Crassostrea gigas. Lelong, C., Mathieu, M., Favrel, P. Eur. J. Biochem. (2000) [Pubmed]
  26. Comparison of two microalgal diets. 2. Influence on odorant composition and organoleptic qualities of raw oysters (Crassostrea gigas). Pennarun, A.L., Prost, C., Haure, J., Demaimay, M. J. Agric. Food Chem. (2003) [Pubmed]
  27. Toxicity and bioconcentration of BHC and lindane in selected estuarine animals. Schimmel, S.C., Patrick, J.M., Forester, J. Arch. Environ. Contam. Toxicol. (1977) [Pubmed]
  28. Insulin-like system and growth regulation in the Pacific oyster Crassostrea gigas: hrIGF-1 effect on protein synthesis of mantle edge cells and expression of an homologous insulin receptor-related receptor. Gricourt, L., Bonnec, G., Boujard, D., Mathieu, M., Kellner, K. Gen. Comp. Endocrinol. (2003) [Pubmed]
  29. Purification and properties of novel molluscan metallothioneins. Roesijadi, G., Kielland, S., Klerks, P. Arch. Biochem. Biophys. (1989) [Pubmed]
  30. Purification and IgE-binding epitopes of a major allergen in the gastropod Turbo cornutus. Ishikawa, M., Ishida, M., Shimakura, K., Nagashima, Y., Shiomi, K. Biosci. Biotechnol. Biochem. (1998) [Pubmed]
 
WikiGenes - Universities