The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Vanadium-49     vanadium

Synonyms: AC1L42QW, 14392-01-9, 49V, Vanadium, isotope of mass 49
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of vanadium

 

Psychiatry related information on vanadium

 

High impact information on vanadium

 

Chemical compound and disease context of vanadium

 

Biological context of vanadium

 

Anatomical context of vanadium

  • Lithium carbonate treatment did not alter the ATPase activities, and the quantity of vanadium present in the membranes could not account for the variations in the enzyme activities observed [25].
  • Nuclear magnetic resonance spectrum of living tunicate blood cells and the structure of the native vanadium chromogen [26].
  • Taxol, which stabilizes cytoplasmic microtubules, prevented the stimulation of DNA synthesis by vanadium [27].
  • This effect was approximately 9-fold higher (140 +/- 15% of maximal insulin response) in adipocytes derived from rats that had been treated with vanadium for several days [28].
  • Using ratiometric Ca2+ imaging and patch-clamp measurement of Ca2+ channel activity, we investigated Ca2+ signaling induced by vanadium compounds in Jurkat T lymphocytes and rat basophilic leukemia cells [29].
 

Associations of vanadium with other chemical compounds

  • Although their activity is often inferior to that of other systems, the use of vanadium-based catalysts in homogeneous Ziegler-Natta polymerizations allows the preparation of high-molecular-weight polymers with narrow molecular-weight distributions, ethene/alpha-olefin copolymers with high alpha-olefin incorporation, and syndiotactic polypropene [30].
  • These studies confirm that the inhibitory form of vanadium usually observed in in vitro experiments is vanadate, in one or more of its hydrated forms [31].
  • Highly purified peroxovanadium (pV) compounds, each containing an oxo ligand, one or two peroxo anions, and an ancillary ligand in the inner coordination sphere of vanadium, were shown to decrease plasma glucose markedly in both normal Sprague-Dawley and insulin-deprived diabetic BB rats [32].
  • The in vitro metal uptake is nonspecific, and manganese, iron, and vanadium all bind, but only manganese restores catalytic activity [33].
  • The steady state kinetic mechanism of the bromide-assisted disproportionation of hydrogen peroxide, forming dioxygen, catalyzed by vanadium bromoperoxidase has been investigated and compared to the mechanism of monochlorodimedone (MCD) bromination under conditions of 0.0125-6 mM H2O2, 1-500 mM Br-, and pH 4.55-6.52 [34].
 

Gene context of vanadium

  • In this study, the lung fibrotic responses were investigated in COX-1 or COX-2-deficient (-/-) mice following vanadium pentoxide (V(2)O(5)) exposure [35].
  • The present studies investigated the signaling pathways of vanadate, a vanadium ion with +5 oxidation state, to activate NF-kappaB transcription factor, a pivotal regulator of inflammatory responses [36].
  • Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts [37].
  • Immunohistochemical analysis in vivo indicated a decrease in cell proliferation (24.68% p < 0.05) and an increase among the TUNEL-positive apoptotic cells along with strong expressions of p53 and Bax, and downregulation of Bcl2 proteins in the mammary tissue of vanadium-treated animals [38].
  • Importantly, overexpression of a dominant negative mutant PKClambda blocked Akt phosphorylation at Ser473 and Thr308, whereas it did not inhibit p70S6k phosphorylation at Thr389 and Thr421/Ser424, suggesting that aPKC activation is specifically involved in vanadium-induced activation of Akt, but not in activation of p70S6k [39].
 

Analytical, diagnostic and therapeutic context of vanadium

References

  1. Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. Robson, R.L., Woodley, P.R., Pau, R.N., Eady, R.R. EMBO J. (1989) [Pubmed]
  2. Vanadium stimulates the (Na+,K+) pump in friend erythroleukemia cells and blocks erythropoiesis. English, L.H., Macara, I.G., Cantley, L.C. J. Cell Biol. (1983) [Pubmed]
  3. Comparison between concentrations of trace elements in normal and neoplastic human breast tissue. Rizk, S.L., Sky-Peck, H.H. Cancer Res. (1984) [Pubmed]
  4. Marked improvement of glucose homeostasis in diabetic ob/ob mice given oral vanadate. Brichard, S.M., Bailey, C.J., Henquin, J.C. Diabetes (1990) [Pubmed]
  5. Vanadate-induced activation of activator protein-1: role of reactive oxygen species. Ding, M., Li, J.J., Leonard, S.S., Ye, J.P., Shi, X., Colburn, N.H., Castranova, V., Vallyathan, V. Carcinogenesis (1999) [Pubmed]
  6. Vanadium and affective disorders. Naylor, G.J. Biol. Psychiatry (1983) [Pubmed]
  7. Tissue vanadium levels in manic-depressive psychosis. Naylor, G.J., Smith, A.H., Bryce-Smith, D., Ward, N.I. Psychological medicine. (1984) [Pubmed]
  8. Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes. Bishayee, A., Oinam, S., Basu, M., Chatterjee, M. Breast Cancer Res. Treat. (2000) [Pubmed]
  9. A synopsis on metals in medicine and psychiatry. Yung, C.Y. Pharmacol. Biochem. Behav. (1984) [Pubmed]
  10. Effects of vanadyl sulfate on kidney in experimental diabetes. Yanardag, R., Bolkent, S., Karabulut-Bulan, O., Tunali, S. Biological trace element research. (2003) [Pubmed]
  11. Adenosine triphosphate-dependent calcium pump in the plasma membrane of guinea pig and human neutrophils. Lagast, H., Lew, P.D., Waldvogel, F.A. J. Clin. Invest. (1984) [Pubmed]
  12. Vanadium in blood plasma or serum. Cornelis, R., Versieck, J. Lancet (1981) [Pubmed]
  13. X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. Ishikawa, K., Mihara, Y., Gondoh, K., Suzuki, E., Asano, Y. EMBO J. (2000) [Pubmed]
  14. From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Morinville, A., Maysinger, D., Shaver, A. Trends Pharmacol. Sci. (1998) [Pubmed]
  15. The role of vanadium in the management of diabetes. Brichard, S.M., Henquin, J.C. Trends Pharmacol. Sci. (1995) [Pubmed]
  16. Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. Cusi, K., Cukier, S., DeFronzo, R.A., Torres, M., Puchulu, F.M., Redondo, J.C. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  17. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Pau, R.N., Eldridge, M.E., Lowe, D.J., Mitchenall, L.A., Eady, R.R. Biochem. J. (1993) [Pubmed]
  18. Vanadium K-edge X-ray-absorption spectroscopy of the functioning and thionine-oxidized forms of the VFe-protein of the vanadium nitrogenase from Azotobacter chroococcum. Arber, J.M., Dobson, B.R., Eady, R.R., Hasnain, S.S., Garner, C.D., Matsushita, T., Nomura, M., Smith, B.E. Biochem. J. (1989) [Pubmed]
  19. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Dilworth, M.J., Eady, R.R., Eldridge, M.E. Biochem. J. (1988) [Pubmed]
  20. The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor. Smith, B.E., Eady, R.R., Lowe, D.J., Gormal, C. Biochem. J. (1988) [Pubmed]
  21. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Hemrika, W., Renirie, R., Dekker, H.L., Barnett, P., Wever, R. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  22. Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. Nielsen, F.H. FASEB J. (1991) [Pubmed]
  23. Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-kappaB. Krejsa, C.M., Nadler, S.G., Esselstyn, J.M., Kavanagh, T.J., Ledbetter, J.A., Schieven, G.L. J. Biol. Chem. (1997) [Pubmed]
  24. Vanadium-induced nuclear factor of activated T cells activation through hydrogen peroxide. Huang, C., Ding, M., Li, J., Leonard, S.S., Rojanasakul, Y., Castranova, V., Vallyathan, V., Ju, G., Shi, X. J. Biol. Chem. (2001) [Pubmed]
  25. RBC membrane adenosine triphosphatase activities in patients with major affective disorders. Linnoila, M., MacDonald, E., Reinila, M., Leroy, A., Rubinow, D.R., Goodwin, F.K. Arch. Gen. Psychiatry (1983) [Pubmed]
  26. Nuclear magnetic resonance spectrum of living tunicate blood cells and the structure of the native vanadium chromogen. Carlson, R.M. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  27. Vanadium ions stimulate DNA synthesis in Swiss mouse 3T3 and 3T6 cells. Smith, J.B. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  28. L-Glutamic acid gamma-monohydroxamate. A potentiator of vanadium-evoked glucose metabolism in vitro and in vivo. Goldwaser, I., Li, J., Gershonov, E., Armoni, M., Karnieli, E., Fridkin, M., Shechter, Y. J. Biol. Chem. (1999) [Pubmed]
  29. Vanadate induces calcium signaling, Ca2+ release-activated Ca2+ channel activation, and gene expression in T lymphocytes and RBL-2H3 mast cells via thiol oxidation. Ehring, G.R., Kerschbaum, H.H., Fanger, C.M., Eder, C., Rauer, H., Cahalan, M.D. J. Immunol. (2000) [Pubmed]
  30. Homogeneous vanadium-based catalysts for the Ziegler-Natta polymerization of alpha-olefins. Hagen, H., Boersma, J., van Koten, G. Chemical Society reviews. (2002) [Pubmed]
  31. Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. Willsky, G.R., White, D.A., McCabe, B.C. J. Biol. Chem. (1984) [Pubmed]
  32. Hypoglycemic effects of peroxovanadium compounds in Sprague-Dawley and diabetic BB rats. Yale, J.F., Lachance, D., Bevan, A.P., Vigeant, C., Shaver, A., Posner, B.I. Diabetes (1995) [Pubmed]
  33. Thermally triggered metal binding by recombinant Thermus thermophilus manganese superoxide dismutase, expressed as the apo-enzyme. Whittaker, M.M., Whittaker, J.W. J. Biol. Chem. (1999) [Pubmed]
  34. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase. Steady state kinetic analysis and comparison to the mechanism of bromination. Everett, R.R., Soedjak, H.S., Butler, A. J. Biol. Chem. (1990) [Pubmed]
  35. Susceptibility of cyclooxygenase-2-deficient mice to pulmonary fibrogenesis. Bonner, J.C., Rice, A.B., Ingram, J.L., Moomaw, C.R., Nyska, A., Bradbury, A., Sessoms, A.R., Chulada, P.C., Morgan, D.L., Zeldin, D.C., Langenbach, R. Am. J. Pathol. (2002) [Pubmed]
  36. Vanadate induction of NF-kappaB involves IkappaB kinase beta and SAPK/ERK kinase 1 in macrophages. Chen, F., Demers, L.M., Vallyathan, V., Ding, M., Lu, Y., Castranova, V., Shi, X. J. Biol. Chem. (1999) [Pubmed]
  37. Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts. Wang, Y.Z., Bonner, J.C. Am. J. Respir. Cell Mol. Biol. (2000) [Pubmed]
  38. Suppression of cell proliferation, induction of apoptosis and cell cycle arrest: Chemopreventive activity of vanadium in vivo and in vitro. Ray, R.S., Ghosh, B., Rana, A., Chatterjee, M. Int. J. Cancer (2007) [Pubmed]
  39. Activation of aPKC is required for vanadate-induced phosphorylation of protein kinase B (Akt), but not p70S6k in mouse epidermal JB6 cells. Li, J., Dokka, S., Wang, L., Shi, X., Castranova, V., Yan, Y., Costa, M., Huang, C. Mol. Cell. Biochem. (2004) [Pubmed]
  40. Structurally and functionally modified forms of pp60v-src in Rous sarcoma virus-transformed cell lysates. Collett, M.S., Belzer, S.K., Purchio, A.F. Mol. Cell. Biol. (1984) [Pubmed]
  41. The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases. Krenn, B.E., Tromp, M.G., Wever, R. J. Biol. Chem. (1989) [Pubmed]
  42. Heterologous expression of the vanadium-containing chloroperoxidase from Curvularia inaequalis in Saccharomyces cerevisiae and site-directed mutagenesis of the active site residues His(496), Lys(353), Arg(360), and Arg(490). Hemrika, W., Renirie, R., Macedo-Ribeiro, S., Messerschmidt, A., Wever, R. J. Biol. Chem. (1999) [Pubmed]
  43. Transmembrane topology of glucose-6-phosphatase. Pan, C.J., Lei, K.J., Annabi, B., Hemrika, W., Chou, J.Y. J. Biol. Chem. (1998) [Pubmed]
  44. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. Cantley, L.C., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., Guidotti, G. J. Biol. Chem. (1977) [Pubmed]
 
WikiGenes - Universities