The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Sperm Capacitation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on Sperm Capacitation


Biological context of Sperm Capacitation


Anatomical context of Sperm Capacitation


Associations of Sperm Capacitation with chemical compounds


Gene context of Sperm Capacitation

  • Reactive oxygen species (ROS), protein kinase A (PKA), protein kinase C (PKC), protein tyrosine kinases (PTKs), and the extracellular signal-regulated protein kinase (ERK or mitogen-activated protein kinase [MAPK]) pathway regulate sperm capacitation [21].
  • The role of this activity in the occurrence of sperm capacitation was also investigated by using PD098059, an inhibitor of the MAPK cascade [22].
  • Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation [21].
  • Recent studies have shown that OGP plays an important role in pre-fertilization reproductive events (i.e. sperm capacitation, sperm-zona binding and zona penetration) [23].
  • Here, we have investigated the topographical distribution and fate of bovine spermadhesin aSFP during sperm capacitation in order to assess whether aSFP could be involved in similar aspects of the fertilization process as its boar homologous proteins [24].

Analytical, diagnostic and therapeutic context of Sperm Capacitation


  1. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Carlson, A.E., Westenbroek, R.E., Quill, T., Ren, D., Clapham, D.E., Hille, B., Garbers, D.L., Babcock, D.F. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Localization of cholesteryl sulfate in human spermatozoa in support of a hypothesis for the mechanism of capacitation. Langlais, J., Zollinger, M., Plante, L., Chapdelaine, A., Bleau, G., Roberts, K.D. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  3. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. Gibbs, G.M., Scanlon, M.J., Swarbrick, J., Curtis, S., Gallant, E., Dulhunty, A.F., O'Bryan, M.K. J. Biol. Chem. (2006) [Pubmed]
  4. Glycodelin-S in human seminal plasma reduces cholesterol efflux and inhibits capacitation of spermatozoa. Chiu, P.C., Chung, M.K., Tsang, H.Y., Koistinen, R., Koistinen, H., Seppala, M., Lee, K.F., Yeung, W.S. J. Biol. Chem. (2005) [Pubmed]
  5. A novel heat-labile phospholipid-binding protein, SVS VII, in mouse seminal vesicle as a sperm motility enhancer. Luo, C.W., Lin, H.J., Chen, Y.H. J. Biol. Chem. (2001) [Pubmed]
  6. KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation. Acevedo, J.J., Mendoza-Lujambio, I., de la Vega-Beltrán, J.L., Treviño, C.L., Felix, R., Darszon, A. Dev. Biol. (2006) [Pubmed]
  7. Effects of progesterone on in vitro sperm capacitation and egg penetration in the golden hamster. Libersky, E.A., Boatman, D.E. Biol. Reprod. (1995) [Pubmed]
  8. Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation. Ecroyd, H., Jones, R.C., Aitken, R.J. Biol. Reprod. (2003) [Pubmed]
  9. Ca(2+)-regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Fraser, L.R., Abeydeera, L.R., Niwa, K. Mol. Reprod. Dev. (1995) [Pubmed]
  10. Hypotaurine in spermatozoa and genital secretions and its production by oviduct epithelial cells in vitro. Guérin, P., Guillaud, J., Ménézo, Y. Hum. Reprod. (1995) [Pubmed]
  11. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. Travis, A.J., Jorgez, C.J., Merdiushev, T., Jones, B.H., Dess, D.M., Diaz-Cueto, L., Storey, B.T., Kopf, G.S., Moss, S.B. J. Biol. Chem. (2001) [Pubmed]
  12. Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. Maccarrone, M., Barboni, B., Paradisi, A., Bernabò, N., Gasperi, V., Pistilli, M.G., Fezza, F., Lucidi, P., Mattioli, M. J. Cell. Sci. (2005) [Pubmed]
  13. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. Asquith, K.L., Baleato, R.M., McLaughlin, E.A., Nixon, B., Aitken, R.J. J. Cell. Sci. (2004) [Pubmed]
  14. Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Belén Herrero, M., Chatterjee, S., Lefièvre, L., de Lamirande, E., Gagnon, C. Free Radic. Biol. Med. (2000) [Pubmed]
  15. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Leclerc, P., de Lamirande, E., Gagnon, C. Free Radic. Biol. Med. (1997) [Pubmed]
  16. Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation. Cohen, G., Rubinstein, S., Gur, Y., Breitbart, H. Dev. Biol. (2004) [Pubmed]
  17. Paradoxical effect of reagents for sulfhydryl and disulfide groups on human sperm capacitation and superoxide production. de Lamirande, E., Gagnon, C. Free Radic. Biol. Med. (1998) [Pubmed]
  18. Major proteins of bovine seminal plasma inhibit phospholipase A2. Manjunath, P., Soubeyrand, S., Chandonnet, L., Roberts, K.D. Biochem. J. (1994) [Pubmed]
  19. Role of spermine in mammalian sperm capacitation and acrosome reaction. Rubinstein, S., Breitbart, H. Biochem. J. (1991) [Pubmed]
  20. Mice carrying two t haplotypes: sperm populations with reduced Zona pellucida binding are deficient in capacitation. Si, Y., Olds-Clarke, P. Biol. Reprod. (1999) [Pubmed]
  21. Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation. O'Flaherty, C., de Lamirande, E., Gagnon, C. Biol. Reprod. (2005) [Pubmed]
  22. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa. Luconi, M., Barni, T., Vannelli, G.B., Krausz, C., Marra, F., Benedetti, P.A., Evangelista, V., Francavilla, S., Properzi, G., Forti, G., Baldi, E. Biol. Reprod. (1998) [Pubmed]
  23. Cloning and characterization of the human oviduct-specific glycoprotein (HuOGP) gene promoter. Agarwal, A., Yeung, W.S., Lee, K.F. Mol. Hum. Reprod. (2002) [Pubmed]
  24. Immunolocalization and quantitation of acidic seminal fluid protein (aSFP) in ejaculated, swim-up, and capacitated bull spermatozoa. Dostàlovà, Z., Calvete, J.J., Sanz, L., Hettel, C., Riedel, D., Schöneck, C., Einspanier, R., Töpfer-Petersen, E. Biol. Chem. Hoppe-Seyler (1994) [Pubmed]
  25. Critical role of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Chan, H.C., Shi, Q.X., Zhou, C.X., Wang, X.F., Xu, W.M., Chen, W.Y., Chen, A.J., Ni, Y., Yuan, Y.Y. Mol. Cell. Endocrinol. (2006) [Pubmed]
  26. Bovine embryo development following ICSI: effect of activation, sperm capacitation and pre-treatment with dithiothreitol. Galli, C., Vassiliev, I., Lagutina, I., Galli, A., Lazzari, G. Theriogenology (2003) [Pubmed]
WikiGenes - Universities