The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

GDPG     [5-(2-amino-6-oxo-3H-purin-9- yl)-3,4...

Synonyms: Gdp glucose, KST-1A3814, AR-1A9106, AC1L19WE, AC1Q6SL5, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of guanosine diphosphate mannose

  • The GDP-mannose-dependent enzyme of R. leguminosarum may represent a functional equivalent of E. coli RfaC [1].
  • Incubation of a membrane fraction from Mycobacterium smegmatis cells with GDP-mannose and free mannose at pH 7 in presence of Mg2+ ions resulted in the formation of a series of alpha 1----6-linked mannooligosaccharides with up to 12 mannoses [2].
  • Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase [3].
  • Transcription of algD, encoding GDP-mannose dehydrogenase, the key enzyme in the alginate biosynthetic pathway, is highly regulated in Azotobacter vinelandii [4].
  • In this report a recombinant bifunctional phosphomannose isomerase/GDP-D-mannose pyrophosphorylase from Helicobacter pylori has been studied [5].

High impact information on guanosine diphosphate mannose


Chemical compound and disease context of guanosine diphosphate mannose


Biological context of guanosine diphosphate mannose

  • Our study demonstrates that GDP-mannose biosynthesis is not essential for Leishmania viability in culture, but constitutes a virulence pathway in these human pathogens [7].
  • This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis [15].
  • Inactivation of PMI at the restrictive temperature of 37 degrees C prevents synthesis of the GDP-mannose and dolichol-phosphate-mannose required for a number of critical mannosyl transfer reactions and results in cell death [16].
  • Mild acid hydrolysis of the 1/10.3 soluble material released water-soluble, neutral 14C-oligosaccharides which eluted from Sephadex G-50 in two or three peaks between the standards cytochrome c and GDP-mannose.. [17].
  • Although the GDP-mannose donor was used in the crystallization experiments and the GDP moiety is bound tightly to the active site, the mannose is not visible in the electron density [18].

Anatomical context of guanosine diphosphate mannose

  • The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes [19].
  • An enzyme present in rabbit liver microsomes has been found to catalyze mannosyltransfer from GDP-mannose to exogenously added oligosaccharide-lipid acceptor resulting in the formation of an alpha-1,2-mannosyl-mannose linkage [20].
  • The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar [21].
  • Vanadate-sensitive ATPase showed a similar pattern, whereas GDP-mannose dolichyl-phosphate mannosyltransferase, an enzyme attached to the endoplasmic reticulum, remained in the same position in the gradients, irrespective of the amount of concanavalin A associated with the plasma membrane [22].
  • The enzyme makes available GMP as an antiporter to be coupled with entry of GDP-mannose into the Golgi lumen from the cytosol [23].

Associations of guanosine diphosphate mannose with other chemical compounds


Gene context of guanosine diphosphate mannose


Analytical, diagnostic and therapeutic context of guanosine diphosphate mannose


  1. Lipopolysaccharide core glycosylation in Rhizobium leguminosarum. An unusual mannosyl transferase resembling the heptosyl transferase I of Escherichia coli. Kadrmas, J.L., Brozek, K.A., Raetz, C.R. J. Biol. Chem. (1996) [Pubmed]
  2. Synthesis of alpha 1----6-mannooligosaccharides in Mycobacterium smegmatis. Function of beta-mannosylphosphoryldecaprenol as the mannosyl donor. Yokoyama, K., Ballou, C.E. J. Biol. Chem. (1989) [Pubmed]
  3. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase. Naught, L.E., Gilbert, S., Imhoff, R., Snook, C., Beamer, L., Tipton, P. Biochemistry (2002) [Pubmed]
  4. Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii. Núñez, C., Moreno, S., Cárdenas, L., Soberón-Chávez, G., Espín, G. J. Bacteriol. (2000) [Pubmed]
  5. Bifunctional phosphomannose isomerase/GDP-D-mannose pyrophosphorylase is the point of control for GDP-D-mannose biosynthesis in Helicobacter pylori. Wu, B., Zhang, Y., Zheng, R., Guo, C., Wang, P.G. FEBS Lett. (2002) [Pubmed]
  6. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Matthijs, G., Schollen, E., Pardon, E., Veiga-Da-Cunha, M., Jaeken, J., Cassiman, J.J., Van Schaftingen, E. Nat. Genet. (1997) [Pubmed]
  7. Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. Garami, A., Ilg, T. EMBO J. (2001) [Pubmed]
  8. Coalescence of microsomal vesicles from rat liver: a phenomenon occurring in parallel with enhancement of the glycosylation activity during incubation of stripped rough microsomes with GTP. Paiement, J., Beaufay, H., Godelaine, D. J. Cell Biol. (1980) [Pubmed]
  9. Identification and characterization of GONST1, a golgi-localized GDP-mannose transporter in Arabidopsis. Baldwin, T.C., Handford, M.G., Yuseff, M.I., Orellana, A., Dupree, P. Plant Cell (2001) [Pubmed]
  10. Deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Schwarz, M., Thiel, C., Lübbehusen, J., Dorland, B., de Koning, T., von Figura, K., Lehle, L., Körner, C. Am. J. Hum. Genet. (2004) [Pubmed]
  11. A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis. Bonin, C.P., Reiter, W.D. Plant J. (2000) [Pubmed]
  12. Cloning and analysis of duplicated rfbM and rfbK genes involved in the formation of GDP-mannose in Escherichia coli O9:K30 and participation of rfb genes in the synthesis of the group I K30 capsular polysaccharide. Jayaratne, P., Bronner, D., MacLachlan, P.R., Dodgson, C., Kido, N., Whitfield, C. J. Bacteriol. (1994) [Pubmed]
  13. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. Köplin, R., Arnold, W., Hötte, B., Simon, R., Wang, G., Pühler, A. J. Bacteriol. (1992) [Pubmed]
  14. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment. Sampaio, M.M., Santos, H., Boos, W. Appl. Environ. Microbiol. (2003) [Pubmed]
  15. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Conklin, P.L., Norris, S.R., Wheeler, G.L., Williams, E.H., Smirnoff, N., Last, R.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. PMI40, an intron-containing gene required for early steps in yeast mannosylation. Smith, D.J., Proudfoot, A., Friedli, L., Klig, L.S., Paravicini, G., Payton, M.A. Mol. Cell. Biol. (1992) [Pubmed]
  17. Biosynthesis and characterization of lipid-linked sugars and glycoproteins in aorta. Chambers, J., Elbein, A.D. J. Biol. Chem. (1975) [Pubmed]
  18. Structure of Kre2p/Mnt1p: a yeast alpha1,2-mannosyltransferase involved in mannoprotein biosynthesis. Lobsanov, Y.D., Romero, P.A., Sleno, B., Yu, B., Yip, P., Herscovics, A., Howell, P.L. J. Biol. Chem. (2004) [Pubmed]
  19. Interorganelle transfer and glycosylation of yeast invertase in vitro. Haselbeck, A., Schekman, R. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. The biosynthesis of oligosaccharide-lipids. Formation of an alpha-1,2-mannosyl-mannose linkage. Schutzbach, J.S., Springfield, J.D., Jensen, J.W. J. Biol. Chem. (1980) [Pubmed]
  21. Glycoprotein biosynthesis: studies on thyroid mannosyltransferases. II. Characterization of a polyisoprenyl mannosyl phosphate and evaluation of its intermediary role in the glycosylation of exogenous acceptors. Adamany, A.M., Spiro, R.G. J. Biol. Chem. (1975) [Pubmed]
  22. Modification of yeast plasma membrane density by concanavalin A attachment. Application to study of chitin synthetase distribution. Kang, M.S., Au-Young, J., Cabib, E. J. Biol. Chem. (1985) [Pubmed]
  23. Regulation of yeast Golgi glycosylation. Guanosine diphosphatase functions as a homodimer in the membrane. Berninsone, P., Lin, Z.Y., Kempner, E., Hirschberg, C.B. J. Biol. Chem. (1995) [Pubmed]
  24. Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. Sullivan, F.X., Kumar, R., Kriz, R., Stahl, M., Xu, G.Y., Rouse, J., Chang, X.J., Boodhoo, A., Potvin, B., Cumming, D.A. J. Biol. Chem. (1998) [Pubmed]
  25. Synthesis of GDP-L-fucose by the human FX protein. Tonetti, M., Sturla, L., Bisso, A., Benatti, U., De Flora, A. J. Biol. Chem. (1996) [Pubmed]
  26. Topography of glycosylation reactions in the rough endoplasmic reticulum membrane. Perez, M., Hirschberg, C.B. J. Biol. Chem. (1986) [Pubmed]
  27. Lipopolysaccharide biosynthesis in Rhizobium leguminosarum. Novel enzymes that process precursors containing 3-deoxy-D-manno-octulosonic acid. Brozek, K.A., Kadrmas, J.L., Raetz, C.R. J. Biol. Chem. (1996) [Pubmed]
  28. Relationship of the structure and biological activity of the natural homologues of tunicamycin. Duksin, D., Mahoney, W.C. J. Biol. Chem. (1982) [Pubmed]
  29. The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. Dean, N., Zhang, Y.B., Poster, J.B. J. Biol. Chem. (1997) [Pubmed]
  30. Excess mannose limits the growth of phosphomannose isomerase PMI40 deletion strain of Saccharomyces cerevisiae. Pitkänen, J.P., Törmä, A., Alff, S., Huopaniemi, L., Mattila, P., Renkonen, R. J. Biol. Chem. (2004) [Pubmed]
  31. Cloning and expression in Escherichia coli of a yeast mannosyltransferase from the asparagine-linked glycosylation pathway. Couto, J.R., Huffaker, T.C., Robbins, P.W. J. Biol. Chem. (1984) [Pubmed]
  32. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. Schaeffer, M.L., Khoo, K.H., Besra, G.S., Chatterjee, D., Brennan, P.J., Belisle, J.T., Inamine, J.M. J. Biol. Chem. (1999) [Pubmed]
  33. Characterization of Yeast Yea4p, a uridine diphosphate-N-acetylglucosamine transporter localized in the endoplasmic reticulum and required for chitin synthesis. Roy, S.K., Chiba, Y., Takeuchi, M., Jigami, Y. J. Biol. Chem. (2000) [Pubmed]
  34. Enzymatic transfer of mannose from mannosyl-phosphoryl-polyprenol to lipid-linked oligosaccharides by pig aorta. Chambers, J., Forsee, W.T., Elbein, A.D. J. Biol. Chem. (1977) [Pubmed]
  35. Detection of beta-1,2-mannosyltransferase in Candida albicans cells. Suzuki, A., Takata, Y., Oshie, A., Tezuka, A., Shibata, N., Kobayashi, H., Okawa, Y., Suzuki, S. FEBS Lett. (1995) [Pubmed]
  36. Study of the conversion of GDP-mannose into GDP-fucose in Nereids: a biochemical marker of oocyte maturation. Bulet, P., Hoflack, B., Porchet, M., Verbert, A. Eur. J. Biochem. (1984) [Pubmed]
  37. Biosynthesis of glycoproteins in the human pathogenic fungus Sporothrix schenckii: synthesis of dolichol phosphate mannose and mannoproteins by membrane-bound and solubilized mannosyl transferases. Ruiz-Baca, E., Villagómez-Castro, J.C., Leal-Morales, C.A., Sabanero-López, M., Flores-Carreón, A., López-Romero, E. Antonie Van Leeuwenhoek (2005) [Pubmed]
  38. Characterization of a GDP-D-mannose 3'',5''-epimerase from rice. Watanabe, K., Suzuki, K., Kitamura, S. Phytochemistry (2006) [Pubmed]
WikiGenes - Universities