The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Oomycetes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Oomycetes

 

High impact information on Oomycetes

  • In a screen for suppressors of npr1-5-based salicylic acid (SA) insensitivity, we isolated a semidominant gain-of-function mutation, designated ssi4, that confers constitutive expression of several PR (pathogenesis-related) genes, induces SA accumulation, triggers programmed cell death, and enhances resistance to bacterial and oomycete pathogens [4].
  • RPP8 confers resistance to an oomycete pathogen, Peronospora parasitica [5].
  • In the Arabidopsis accession Wassilewskija, the RPP1 region on chromosome 3 contains four genetically linked recognition specificities, conditioning resistance to different isolates of the biotrophic oomycete Peronospora parasitica (downy mildew) [6].
  • Elicitins and lipid-transfer proteins are small cysteine-rich lipid-binding proteins secreted by oomycetes and plant cells, respectively, that share some structural and functional properties [7].
  • We report here that one of two Achlya H3 histones (H3.1) and also the oomycete histone alpha appear to be highly phosphorylated with heat shock [8].
 

Biological context of Oomycetes

 

Anatomical context of Oomycetes

 

Associations of Oomycetes with chemical compounds

  • Phytophthora sojae (Kaufmann and Gerdemann) is an oomycete that causes stem and root rot on soybean (Glycine max L. Merr) plants [16].
  • Plant pathogenic oomycetes, such as the potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family [17].
  • By contrast, cryptogein, a sterol carrier protein from the Oomycete Phytophtora cryptogea, greatly increased absorption [18].
  • Kanosamine was highly inhibitory to growth of plant-pathogenic oomycetes and moderately inhibitory to certain fungi and inhibited few bacterial species tested [19].
  • The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes [20].
 

Gene context of Oomycetes

  • These features classify RPS4 as a member of the TIR-NBS-LRR R gene family founded by N, L6 and RPP5, which determine resistance to viral, fungal and oomycete pathogens, respectively [21].
  • A functional role for PCC1 in plant defence was demonstrated since plants overexpressing PCC1 are resistant against normally virulent oomycetes [22].
  • Furthermore, the mos6-1 single mutant exhibited enhanced disease susceptibility to a virulent oomycete pathogen [23].
  • GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification [24].
  • Nematodes, amoebas, ciliates, apicomplexans, and oomycetes express an alternative DBP with the SCP-2 domain directly connected to the D-3-hydroxyacyl-CoA dehydrogenase [25].
 

Analytical, diagnostic and therapeutic context of Oomycetes

References

  1. Genetics of zwittermicin a production by Bacillus cereus. Emmert, E.A., Klimowicz, A.K., Thomas, M.G., Handelsman, J. Appl. Environ. Microbiol. (2004) [Pubmed]
  2. Infectivity and pathogenicity of the oomycete Aphanomyces invadans in Atlantic menhaden Brevoortia tyrannus. Kiryu, Y., Shields, J.D., Vogelbein, W.K., Kator, H., Blazer, V.S. Dis. Aquat. Org. (2003) [Pubmed]
  3. Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Silo-Suh, L.A., Stabb, E.V., Raffel, S.J., Handelsman, J. Curr. Microbiol. (1998) [Pubmed]
  4. A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Shirano, Y., Kachroo, P., Shah, J., Klessig, D.F. Plant Cell (2002) [Pubmed]
  5. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Cooley, M.B., Pathirana, S., Wu, H.J., Kachroo, P., Klessig, D.F. Plant Cell (2000) [Pubmed]
  6. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Botella, M.A., Parker, J.E., Frost, L.N., Bittner-Eddy, P.D., Beynon, J.L., Daniels, M.J., Holub, E.B., Jones, J.D. Plant Cell (1998) [Pubmed]
  7. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Blein, J.P., Coutos-Thévenot, P., Marion, D., Ponchet, M. Trends Plant Sci. (2002) [Pubmed]
  8. Changes in chromatin and the phosphorylation of nuclear proteins during heat shock of Achlya ambisexualis. Pekkala, D., Heath, B., Silver, J.C. Mol. Cell. Biol. (1984) [Pubmed]
  9. Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Ah Fong, A.M., Judelson, H.S. Mol. Microbiol. (2003) [Pubmed]
  10. Regulation of two different hsp70 transcript populations in steroid hormone-induced fungal development. Silver, J.C., Brunt, S.A., Kyriakopoulou, G., Borkar, M., Nazarian-Armavil, V. Dev. Genet. (1993) [Pubmed]
  11. Structure and expression of a gene encoding heat-shock protein Hsp70 from the Oomycete fungus Bremia lactucae. Judelson, H.S., Michelmore, R.W. Gene (1989) [Pubmed]
  12. Regulation of hsp90 and hsp70 genes during antheridiol-induced hyphal branching in the oomycete Achlya ambisexualis. Brunt, S.A., Borkar, M., Silver, J.C. Fungal Genet. Biol. (1998) [Pubmed]
  13. A beta4 integrin-like protein co-localises with a phosphotyrosine containing protein in the oomycete Achlya bisexualis: inhibition of tyrosine phosphorylation slows tip growth. Chitcholtan, K., Garrill, A. Fungal Genet. Biol. (2005) [Pubmed]
  14. Ca(2+)-dependent polarization of axis establishment in the tip-growing organism, Saprolegnia ferax, by gradients of the ionophore A23187. Hyde, G.J., Heath, I.B. Eur. J. Cell Biol. (1995) [Pubmed]
  15. Laboratory studies to assess the risk of development of resistance to zoxamide. Young, D.H., Spiewak, S.L., Slawecki, R.A. Pest Manag. Sci. (2001) [Pubmed]
  16. Comparative analysis of expressed sequences in Phytophthora sojae. Qutob, D., Hraber, P.T., Sobral, B.W., Gijzen, M. Plant Physiol. (2000) [Pubmed]
  17. A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Tian, M., Benedetti, B., Kamoun, S. Plant Physiol. (2005) [Pubmed]
  18. Characterization of sterol uptake in leaf tissues of sugar beet. Rossard, S., Bonmort, J., Guinet, F., Ponchet, M., Roblin, G. Planta (2003) [Pubmed]
  19. Production of kanosamine by Bacillus cereus UW85. Milner, J.L., Silo-Suh, L., Lee, J.C., He, H., Clardy, J., Handelsman, J. Appl. Environ. Microbiol. (1996) [Pubmed]
  20. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Mattinen, L., Tshuikina, M., Mäe, A., Pirhonen, M. Mol. Plant Microbe Interact. (2004) [Pubmed]
  21. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Gassmann, W., Hinsch, M.E., Staskawicz, B.J. Plant J. (1999) [Pubmed]
  22. PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis. Sauerbrunn, N., Schlaich, N.L. Planta (2004) [Pubmed]
  23. An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Palma, K., Zhang, Y., Li, X. Curr. Biol. (2005) [Pubmed]
  24. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis. Robertson, D.L., Tartar, A. Mol. Biol. Evol. (2006) [Pubmed]
  25. Fusion and fission, the evolution of sterol carrier protein-2. Edqvist, J., Blomqvist, K. J. Mol. Evol. (2006) [Pubmed]
  26. Effect of fosetyl-A1 on peroxidase from grapevine (Vitis vinifera) cells. López-Serrano, M., Ferrer, M.A., Ros Barceló, A., Pedreño, M.A. European journal of histochemistry : EJH. (1995) [Pubmed]
 
WikiGenes - Universities