The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Vitis

 
 

Disease relevance of Vitis

  • Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis [1].
  • The grapevine (Vitis vinifera L.) partial fragment of cDNA clone pGOGAT1 [Loulakakis and Roubelakis-Angelakis (1997) Physiol Plant 101:220-228], encoding the ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1), was overexpressed in Escherichia coli cells [2].
  • Toxicity of an alcohol-free hydro-alcoholic grape skin extract (GSE) obtained from red grapes Vitis labrusca (Isabel varietal) that present antihypertensive, vasodilator and antioxidant effects was estimated by different bioassays [3].
 

High impact information on Vitis

  • The grapevine genome (Vitis vinifera L. cv. Pinot Noir) was sequenced independently by two groups in 2007 [4] [5].
  • The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection [6].
  • Here we identified, characterized, and purified a 58-kD ABA-stimulated calcium-dependent protein kinase from the mesocarp of grape berries (Vitis vinifera x Vitis labrusca), designated ACPK1 (for ABA-stimulated calcium-dependent protein kinase1) [7].
  • Wine grapes (Vitis vinifera) that accumulate neither anthranilate nor methyl anthranilate do not express this enzyme activity nor do they accumulate this protein [8].
  • The biosynthesis of methyl anthranilate, the volatile compound responsible for the distinctive 'foxy' aroma and flavor of the Washington Concord grape (Vitis labrusca), involves an alcohol acyltransferase that catalyzes the formation of methyl anthranilate from anthraniloyl-coenzyme A (CoA) and methanol [8].
  • To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development [9].
 

Chemical compound and disease context of Vitis

 

Biological context of Vitis

  • In the present study we have attempted to break down the oxidative burst response into the individual active oxygen species (AOS) superoxide (O(2)(*-)) and H(2)O(2), and into individual AOS-generating systems during the isolation of regenerating tobacco (Nicotiana tabacum L.) and non-regenerating grape (Vitis vinifera L. ) mesophyll protoplasts [12].
  • A 13 kb DNA fragment was isolated from a grapevine (Vitis var. Optima) genomic library by hybridizing with elicitor-induced stilbene synthase cDNA as a probe [13].
  • Earlier workers isolated a stilbene synthase gene (Vst1) from grapevine (Vitis vinifera L.), which has subsequently been introduced as a transgene into a range of species to increase resistance of hosts to pathogens to which they were originally susceptible [14].
  • Moreover, in accordance with the different tolerances of the plants, the Vitis genotypes were found to differ in their radial O2 loss from the adventitious roots when in an O2-free environment [15].
  • Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3 [16].
 

Anatomical context of Vitis

 

Associations of Vitis with chemical compounds

  • This pathogen-related expression is, in contrast, clearly reduced in transgenic barley plants expressing a stilbene synthase from grape (Vitis vinifera), whereas the mRNA level of a gene encoding the pathogen-related protein HvPR1 is unaffected [20].
  • During ripening of grape (Vitis labruscana L. cv Concord) berries, abundance of several proteins increased, coordinately with hexoses, to the extent that these became the predominant proteins in the ovary [21].
  • Basic class I (VCHIT1b) and a class III (VCH3) chitinase cDNAs were cloned from cultured Vitis vinifera L. cv Pinot Noir cells and used to probe the induction response of grapevine cells to salicylic acid or yeast elicitor [22].
  • Mature fruit of grapevine (Vitis vinifera) contains unusually high levels of free proline (Pro; up to 24 micromol or 2.8 mg/g fresh weight) [23].
  • Characterization and expression of caffeoyl-coenzyme A 3-O-methyltransferase proposed for the induced resistance response of Vitis vinifera L [24].
 

Gene context of Vitis

  • Comparison showed that the virF gene from A. vitis strain Ag57 is almost identical to that from A. tumefaciens octopine strains [25].
  • Diversity of the limited-host range iaaH gene of Agrobacterium vitis strain Ag162 [26].
  • We have characterized the tryptophan-2-monooxygenase (iaaM) gene of A. vitis strain AG162 and show it is different from other A. vitis strains and related to iaaM of A. rhizogenes [27].
  • SIRK is a K(+) channel identified in grapevine (Vitis vinifera), belonging to the so-called Shaker family [28].
  • A genomic clone Vvht1 (Vitis vinifera hexose transporter1) and the corresponding cDNA encoding a hexose transporter whose expression is induced during berry ripening have been isolated [29].
 

Analytical, diagnostic and therapeutic context of Vitis

References

  1. Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis. Crouzet, P., Otten, L. J. Bacteriol. (1995) [Pubmed]
  2. Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase, and its spatial and temporal changes during leaf development. Loulakakis, K.A., Primikirios, N.I., Nikolantonakis, M.A., Roubelakis-Angelakis, K.A. Planta (2002) [Pubmed]
  3. Genotoxic evaluation of a vinifera skin extract that present pharmacological activities. Aiub, C., Stankevicins, L., da Costa, V., Ferreira, F., Mazzei, J., Ribeiro da Silva, A., Soares de Moura, R., Felzenszwalb, I. Food Chem. Toxicol. (2004) [Pubmed]
  4. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pè, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quétier, F., Wincker, P. Nature. (2007) [Pubmed]
  5. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L.M., Vezzulli, S., Reid, J., Malacarne, G., Iliev, D., Coppola, G., Wardell, B., Micheletti, D., Macalma, T., Facci, M., Mitchell, J.T., Perazzolli, M., Eldredge, G., Gatto, P., Oyzerski, R., Moretto, M., Gutin, N., Stefanini, M., Chen, Y., Segala, C., Davenport, C., Demattè, L., Mraz, A., Battilana, J., Stormo, K., Costa, F., Tao, Q., Si-Ammour, A., Harkins, T., Lackey, A., Perbost, C., Taillon, B., Stella, A., Solovyev, V., Fawcett, J.A., Sterck, L., Vandepoele, K., Grando, S.M., Toppo, S., Moser, C., Lanchbury, J., Bogden, R., Skolnick, M., Sgaramella, V., Bhatnagar, S.K., Fontana, P., Gutin, A., Van de Peer, Y., Salamini, F., Viola, R. PLoS. ONE. (2007) [Pubmed]
  6. Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Schouten, A., Wagemakers, L., Stefanato, F.L., van der Kaaij, R.M., van Kan, J.A. Mol. Microbiol. (2002) [Pubmed]
  7. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Yu, X.C., Li, M.J., Gao, G.F., Feng, H.Z., Geng, X.Q., Peng, C.C., Zhu, S.Y., Wang, X.J., Shen, Y.Y., Zhang, D.P. Plant Physiol. (2006) [Pubmed]
  8. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including 'foxy' methylanthranilate. Wang, J., Luca, V.D. Plant J. (2005) [Pubmed]
  9. Floral meristem identity genes are expressed during tendril development in grapevine. Calonje, M., Cubas, P., Martínez-Zapater, J.M., Carmona, M.J. Plant Physiol. (2004) [Pubmed]
  10. Molecular typing of Agrobacterium species isolates from catheter-related bloodstream infections. Giammanco, G.M., Pignato, S., Santangelo, C., Grimont, P.A., Grimont, F., Giammanco, G. Infection control and hospital epidemiology : the official journal of the Society of Hospital Epidemiologists of America. (2004) [Pubmed]
  11. Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Otten, L., De Ruffray, P. Mol. Gen. Genet. (1994) [Pubmed]
  12. The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Papadakis, A.K., Roubelakis-Angelakis, K.A. Plant Physiol. (1999) [Pubmed]
  13. Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Wiese, W., Vornam, B., Krause, E., Kindl, H. Plant Mol. Biol. (1994) [Pubmed]
  14. Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Zhu, Y.J., Agbayani, R., Jackson, M.C., Tang, C.S., Moore, P.H. Planta (2004) [Pubmed]
  15. Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Mancuso, S., Boselli, M. Planta (2002) [Pubmed]
  16. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Li, H.Y., Yang, G.D., Shu, H.R., Yang, Y.T., Ye, B.X., Nishida, I., Zheng, C.C. Plant Cell Physiol. (2006) [Pubmed]
  17. Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Davies, C., Robinson, S.P. Plant Physiol. (1996) [Pubmed]
  18. Composition and cellular localization of tannins in grape seeds during maturation. Geny, L., Saucier, C., Bracco, S., Daviaud, F., Glories, Y. J. Agric. Food Chem. (2003) [Pubmed]
  19. Powerful hepatoprotective and hepatotoxic plant oligostilbenes, isolated from the Oriental medicinal plant Vitis coignetiae (Vitaceae). Oshima, Y., Namao, K., Kamijou, A., Matsuoka, S., Nakano, M., Terao, K., Ohizumi, Y. Experientia (1995) [Pubmed]
  20. A novel nucleus-targeted protein is expressed in barley leaves during senescence and pathogen infection. Krupinska, K., Haussühl, K., Schäfer, A., van der Kooij, T.A., Leckband, G., Lörz, H., Falk, J. Plant Physiol. (2002) [Pubmed]
  21. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Salzman, R.A., Tikhonova, I., Bordelon, B.P., Hasegawa, P.M., Bressan, R.A. Plant Physiol. (1998) [Pubmed]
  22. Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Busam, G., Kassemeyer, H.H., Matern, U. Plant Physiol. (1997) [Pubmed]
  23. Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of delta1-pyrroline-5-carboxylate synthetase mRNA or protein. Stines, A.P., Naylor, D.J., Høj, P.B., van Heeswijck, R. Plant Physiol. (1999) [Pubmed]
  24. Characterization and expression of caffeoyl-coenzyme A 3-O-methyltransferase proposed for the induced resistance response of Vitis vinifera L. Busam, G., Junghanns, K.T., Kneusel, R.E., Kassemeyer, H.H., Matern, U. Plant Physiol. (1997) [Pubmed]
  25. The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids. Schrammeijer, B., Hemelaar, J., Hooykaas, P.J. Mol. Plant Microbe Interact. (1998) [Pubmed]
  26. Diversity of the limited-host range iaaH gene of Agrobacterium vitis strain Ag162. Oetiker, J.H., Kato, A. DNA Seq. (1998) [Pubmed]
  27. Molecular analysis of a tryptophan-2-monooxygenase gene (IaaM) of Agrobacterium vitis. Oetiker, J.H., Lee, D.H., Kato, A. DNA Seq. (1999) [Pubmed]
  28. A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry. Pratelli, R., Lacombe, B., Torregrosa, L., Gaymard, F., Romieu, C., Thibaud, J.B., Sentenac, H. Plant Physiol. (2002) [Pubmed]
  29. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. Fillion, L., Ageorges, A., Picaud, S., Coutos-Thévenot, P., Lemoine, R., Romieu, C., Delrot, S. Plant Physiol. (1999) [Pubmed]
  30. Two new stilbene dimer glucosides from grape (Vitis vinifera) cell cultures. Waffo-Teguo, P., Lee, D., Cuendet, M., Mérillon, J., Pezzuto, J.M., Kinghorn, A.D. J. Nat. Prod. (2001) [Pubmed]
  31. Residues of cypermethrin in field-treated grapes and raisins produced after various treatments. Lentza-Rizos, C.h., Kokkinaki, K. Food additives and contaminants. (2002) [Pubmed]
  32. Acute renal failure in dogs after the ingestion of grapes or raisins: a retrospective evaluation of 43 dogs (1992-2002). Eubig, P.A., Brady, M.S., Gwaltney-Brant, S.M., Khan, S.A., Mazzaferro, E.M., Morrow, C.M. J. Vet. Intern. Med. (2005) [Pubmed]
  33. Enhanced anthocyanin production from grape callus in an air-lift type bioreactor using a viscous additive-supplemented medium. Honda, H., Hiraoka, K., Nagamori, E., Omote, M., Kato, Y., Hiraoka, S., Kobayashi, T. J. Biosci. Bioeng. (2002) [Pubmed]
  34. Application of competitive enzyme-linked immunosorbent assay for the quantification of imidacloprid titers in xylem fluid extracted from grapevines. Byrne, F.J., Castle, S.J., Bi, J.L., Toscano, N.C. J. Econ. Entomol. (2005) [Pubmed]
 
WikiGenes - Universities