The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

cis-ACPD     (1S,3R)-1-aminocyclopentane- 1,3...

Synonyms: t-ACPD, trans-ACPD, CHEMBL34453, SureCN179741, A182_SIGMA, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CB 1712

 

Psychiatry related information on CB 1712

 

High impact information on CB 1712

 

Chemical compound and disease context of CB 1712

 

Biological context of CB 1712

 

Anatomical context of CB 1712

 

Associations of CB 1712 with other chemical compounds

 

Gene context of CB 1712

 

Analytical, diagnostic and therapeutic context of CB 1712

  • Perfusion of the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) for a prolonged period (20 min) induced long-term depression (LTD) of field excitatory postsynaptic field potentials (epsps) from the baseline level and also depotentiation (DP) from the long-term potentiated level [31].
  • 2. With CsCl-filled microelectrodes, bath application of 1S,3R-ACPD induced an inward current of -308 +/p 50 (SE) pA amplitude [holding potential (VH -60 mV, n = 12)] associated with a conductance decrease (26.5 +/- 5.6%, P < or = 0.0022, n = 12) [32].
  • 1S,3R-ACPD-induced LTP does not require electrical stimulation during its induction, but is dependent on an intact connection between the CA3 and CA1 regions of the hippocampus [33].
  • 1. The single-electrode voltage-clamp technique was used to study the effects of the metabotropic glutamate receptors (mGluRs) agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, ACPD, 3-10 microM) on CA3 hippocampal neurons during the 1st 10 days of postnatal (P) life and in adulthood [34].
  • The Group II and Group III mGluR agonists L-AP4, CCG-I, DCG-IV, 1S,3R-ACPD and S-4C3HPG, applied in the vicinity of the recording site by iontophoresis, were found to reduce inhibitions revealed by the condition-test paradigm (by 67, 75, 50, 43 and 77% from control inhibitions, respectively) [35].

References

  1. Seizures and brain injury in neonatal rats induced by 1S,3R-ACPD, a metabotropic glutamate receptor agonist. McDonald, J.W., Fix, A.S., Tizzano, J.P., Schoepp, D.D. J. Neurosci. (1993) [Pubmed]
  2. Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Cohen, A.S., Raymond, C.R., Abraham, W.C. Hippocampus. (1998) [Pubmed]
  3. Cellular mechanisms of protection by metabotropic glutamate receptors during anoxia and nitric oxide toxicity. Maiese, K., Swiriduk, M., TenBroeke, M. J. Neurochem. (1996) [Pubmed]
  4. 1S,3R-ACPD-preferring inward current in rat dorsolateral septal neurons is mediated by a novel excitatory amino acid receptor. Zheng, F., Hasuo, H., Gallagher, J.P. Neuropharmacology (1995) [Pubmed]
  5. 1S,3R-ACPD has cataleptogenic effects and reverses MK-801-, and less pronounced, D,L-amphetamine-induced locomotion. Kronthaler, U.O., Schmidt, W.J. Eur. J. Pharmacol. (1996) [Pubmed]
  6. Seizures and neuronal damage induced in the rat by activation of group I metabotropic glutamate receptors with their selective agonist 3,5-dihydroxyphenylglycine. Camón, L., Vives, P., de Vera, N., Martínez, E. J. Neurosci. Res. (1998) [Pubmed]
  7. Antidepressant treatment influences group I of glutamate metabotropic receptors in slices from hippocampal CA1 region. Pilc, A., Brański, P., Pałucha, A., Tokarski, K., Bijak, M. Eur. J. Pharmacol. (1998) [Pubmed]
  8. Distinct subtypes of metabotropic glutamate receptors mediate differential actions on excitability of spinal respiratory motoneurons. Dong, X.W., Feldman, J.L. J. Neurosci. (1999) [Pubmed]
  9. Multiple actions of 1S,3R-ACPD in modulating endogenous synaptic transmission to spinal respiratory motoneurons. Dong, X.W., Morin, D., Feldman, J.L. J. Neurosci. (1996) [Pubmed]
  10. Activation of a metabotropic excitatory amino acid receptor potentiates spike-driven calcium increases in neurons of the dorsolateral septum. Zheng, F., Gallagher, J.P., Connor, J.A. J. Neurosci. (1996) [Pubmed]
  11. Synchronized oscillations in hippocampal CA3 neurons induced by metabotropic glutamate receptor activation. Taylor, G.W., Merlin, L.R., Wong, R.K. J. Neurosci. (1995) [Pubmed]
  12. Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex. Burke, J.P., Hablitz, J.J. J. Neurosci. (1994) [Pubmed]
  13. Regulation of striatal cyclic-3',5'-adenosine monophosphate accumulation and GABA release by glutamate metabotropic and dopamine D1 receptors. Wang, J., Johnson, K.M. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  14. Development profile of metabotropic glutamate receptor mRNA in rat brain. Condorelli, D.F., Dell'Albani, P., Amico, C., Casabona, G., Genazzani, A.A., Sortino, M.A., Nicoletti, F. Mol. Pharmacol. (1992) [Pubmed]
  15. (1 S,3 R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced increases in cyclic AMP formation in the neonatal rat hippocampus are mediated by a synergistic interaction between phosphoinositide- and inhibitory cyclic AMP-coupled mGluRs. Schoepp, D.D., Johnson, B.G., Monn, J.A. J. Neurochem. (1996) [Pubmed]
  16. Chronic exposure to ammonia alters pathways modulating phosphorylation of microtubule-associated protein 2 in cerebellar neurons in culture. Sáez, R., Llansola, M., Felipo, V. J. Neurochem. (1999) [Pubmed]
  17. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. Biber, K., Laurie, D.J., Berthele, A., Sommer, B., Tölle, T.R., Gebicke-Härter, P.J., van Calker, D., Boddeke, H.W. J. Neurochem. (1999) [Pubmed]
  18. Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. Copani, A., Bruno, V.M., Barresi, V., Battaglia, G., Condorelli, D.F., Nicoletti, F. J. Neurochem. (1995) [Pubmed]
  19. Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid in brain slices. Casabona, G., Genazzani, A.A., Di Stefano, M., Sortino, M.A., Nicoletti, F. J. Neurochem. (1992) [Pubmed]
  20. The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. Nakahara, K., Okada, M., Nakanishi, S. J. Neurochem. (1997) [Pubmed]
  21. Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. Kinney, G.A., Slater, N.T. J. Neurophysiol. (1993) [Pubmed]
  22. Metabotropic glutamate agonist-induced rotation: a pharmacological, FOS immunohistochemical, and [14C]-2-deoxyglucose autoradiographic study. Kearney, J.A., Frey, K.A., Albin, R.L. J. Neurosci. (1997) [Pubmed]
  23. Activation of metabotropic glutamate receptors inhibits calcium currents and GABA-mediated synaptic potentials in striatal neurons. Stefani, A., Pisani, A., Mercuri, N.B., Bernardi, G., Calabresi, P. J. Neurosci. (1994) [Pubmed]
  24. Actions of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) in retinal ON bipolar cells indicate that it is an agonist at L-AP4 receptors. Thoreson, W.B., Miller, R.F. J. Gen. Physiol. (1994) [Pubmed]
  25. Metabotropic glutamate receptor activation produces extrapyramidal motor system activation that is mediated by striatal dopamine. Sacaan, A.I., Bymaster, F.P., Schoepp, D.D. J. Neurochem. (1992) [Pubmed]
  26. The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. Schoepp, D.D., Salhoff, C.R., Wright, R.A., Johnson, B.G., Burnett, J.P., Mayne, N.G., Belagaje, R., Wu, S., Monn, J.A. Neuropharmacology (1996) [Pubmed]
  27. Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors. O'Connor, J.J., Rowan, M.J., Anwyl, R. J. Neurosci. (1995) [Pubmed]
  28. 2-substituted (2SR)-2-amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as potent and selective antagonists of group II metabotropic glutamate receptors. 2. Effects of aromatic substitution, pharmacological characterization, and bioavailability. Ornstein, P.L., Bleisch, T.J., Arnold, M.B., Kennedy, J.H., Wright, R.A., Johnson, B.G., Tizzano, J.P., Helton, D.R., Kallman, M.J., Schoepp, D.D., Hérin, M. J. Med. Chem. (1998) [Pubmed]
  29. Group I metabotropic glutamate receptors mediate phospholipase D stimulation in rat cultured astrocytes. Servitja, J.M., Masgrau, R., Sarri, E., Picatoste, F. J. Neurochem. (1999) [Pubmed]
  30. 2-Substituted (2SR)-2-amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as potent and selective antagonists of group II metabotropic glutamate receptors. 1. Effects of alkyl, arylalkyl, and diarylalkyl substitution. Ornstein, P.L., Bleisch, T.J., Arnold, M.B., Wright, R.A., Johnson, B.G., Schoepp, D.D. J. Med. Chem. (1998) [Pubmed]
  31. Metabotropic glutamate receptor-induced homosynaptic long-term depression and depotentiation in the dentate gyrus of the rat hippocampus in vitro. O'Mara, S.M., Rowan, M.J., Anwyl, R. Neuropharmacology (1995) [Pubmed]
  32. Glutamate metabotropic receptors increase a Ca(2+)-activated nonspecific cationic current in CA1 hippocampal neurons. Crépel, V., Aniksztejn, L., Ben-Ari, Y., Hammond, C. J. Neurophysiol. (1994) [Pubmed]
  33. Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Bortolotto, Z.A., Collingridge, G.L. Neuropharmacology (1993) [Pubmed]
  34. Persistent current oscillations produced by activation of metabotropic glutamate receptors in immature rat CA3 hippocampal neurons. Aniksztejn, L., Sciancalepore, M., Ben Ari, Y., Cherubini, E. J. Neurophysiol. (1995) [Pubmed]
  35. Modulation of sensory neurone excitatory and inhibitory responses in the ventrobasal thalamus by activation of metabotropic excitatory amino acid receptors. Salt, T.E., Eaton, S.A. Neuropharmacology (1995) [Pubmed]
 
WikiGenes - Universities