The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

oxoiron     oxoiron

Synonyms: Iron monooxide, Iron monoxide, FERROUS OXIDE, HSDB 464, AG-D-70479, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of oxoiron

 

High impact information on oxoiron

 

Biological context of oxoiron

  • Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism [11].
  • Iron oxide and cobalt oxide aerosols were judged suitable for inhalation studies in calves, and cobalt oxide was selected for pulmonary clearance studies due to the low background content of cobalt in lung tissue [12].
  • Iron oxide deposition did not bring about significant changes in cell types or numbers of AM lavaged, AM viabilities, or the plastic substrate adherence characteristics of the AM [13].
 

Anatomical context of oxoiron

  • Iron oxide nanoparticles can therefore be used as a marker for the long-term noninvasive MR tracking of implanted stem cells [14].
  • BACKGROUND AND PURPOSE: Iron oxide-based contrast agents have been investigated as more specific MR imaging agents for central nervous system (CNS) inflammation [15].
  • Iron oxide was the least effective and the matched susceptibility mixture was the most effective for the intestine, which has traditionally been the most difficult region of the GI tract to visualize clearly [16].
  • Iron oxide (positive Perls blue staining) was observed in Kupffer cells after injection of medium and large SPIO particles, and also in hepatocytes after injection of small SPIO particles [17].
  • CONCLUSIONS: Iron oxide in the preocular tear film is taken up preferentially by conjunctival lymphoid tissue, supporting the hypothesis that mammalian conjunctival lymphoid follicles may participate in the acquired immune response to pathogens in the preocular tear film [18].
 

Associations of oxoiron with other chemical compounds

  • Electrospray ionization in combination with Fourier transform ion cyclotron resonance spectrometry is used to prepare and characterize at a molecular level high-valent oxoiron intermediates formed in the reaction of [(TPFPP)Fe(III)]Cl (TPFPP= meso-tetrakis(pentafluorophenyl)porphinato dianion) (1-Cl) with H(2)O(2) in methanol [19].
  • Indirect evidence for the formation of six-coordinate oxoiron (IV) tetramesitylporphyrin complexes FeIV = O(tmp*)X (X=Cl-, Br-) by m-CPBA oxidation of FeX(tmp) (X=Cl-, Br-) in butyronitrile at - 78 degrees C was also obtained by Mössbauer spectroscopy [20].
  • Iron oxide nanocomposites of magnetic particles coated with zirconia were used as affinity probes to selectively concentrate phosphopeptides from tryptic digests of alpha- and beta-caseins, milk, and egg white to exemplify the enrichment of phosphopeptides from complex samples [21].
  • Iron oxide magnetic nanoparticles were incorporated into the hydrogel systems by polymerizing mixtures of the nanoparticles and monomer solutions [22].
 

Gene context of oxoiron

 

Analytical, diagnostic and therapeutic context of oxoiron

References

  1. Assessment of Bone Marrow Angiogenesis in Patients with Acute Myeloid Leukemia by Using Contrast-enhanced MR Imaging with Clinically Approved Iron Oxides: Initial Experience. Matuszewski, L., Persigehl, T., Wall, A., Meier, N., Bieker, R., Kooijman, H., Tombach, B., Mesters, R., Berdel, W.E., Heindel, W., Bremer, C. Radiology (2007) [Pubmed]
  2. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Allkemper, T., Bremer, C., Matuszewski, L., Ebert, W., Reimer, P. Radiology. (2002) [Pubmed]
  3. Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. Anzai, Y., Prince, M.R. Journal of magnetic resonance imaging : JMRI. (1997) [Pubmed]
  4. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. Auffan, M., Decome, L., Rose, J., Orsiere, T., De Meo, M., Briois, V., Chaneac, C., Olivi, L., Berge-Lefranc, J.L., Botta, A., Wiesner, M.R., Bottero, J.Y. Environ. Sci. Technol. (2006) [Pubmed]
  5. Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin's lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Daldrup-Link, H.E., Rummeny, E.J., Ihssen, B., Kienast, J., Link, T.M. European radiology. (2002) [Pubmed]
  6. Biomimetic amplification of nanoparticle homing to tumors. Simberg, D., Duza, T., Park, J.H., Essler, M., Pilch, J., Zhang, L., Derfus, A.M., Yang, M., Hoffman, R.M., Bhatia, S., Sailor, M.J., Ruoslahti, E. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  7. Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Leite, F.P., Tsao, D., Vanduffel, W., Fize, D., Sasaki, Y., Wald, L.L., Dale, A.M., Kwong, K.K., Orban, G.A., Rosen, B.R., Tootell, R.B., Mandeville, J.B. Neuroimage (2002) [Pubmed]
  8. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Stroh, A., Zimmer, C., Gutzeit, C., Jakstadt, M., Marschinke, F., Jung, T., Pilgrimm, H., Grune, T. Free Radic. Biol. Med. (2004) [Pubmed]
  9. Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Rivière, C., Boudghène, F.P., Gazeau, F., Roger, J., Pons, J.N., Laissy, J.P., Allaire, E., Michel, J.B., Letourneur, D., Deux, J.F. Radiology. (2005) [Pubmed]
  10. Manganese and iron transport across pulmonary epithelium. Heilig, E.A., Thompson, K.J., Molina, R.M., Ivanov, A.R., Brain, J.D., Wessling-Resnick, M. Am. J. Physiol. Lung Cell Mol. Physiol. (2006) [Pubmed]
  11. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Pouliquen, D., Le Jeune, J.J., Perdrisot, R., Ermias, A., Jallet, P. Magnetic resonance imaging. (1991) [Pubmed]
  12. Generation and characterization of respirable metallic oxide aerosols for pulmonary clearance studies in calves. Lay, J.C., Slauson, D.O. The Cornell veterinarian. (1987) [Pubmed]
  13. Characteristics of alveolar macrophages following the deposition of a low burden or iron oxide in the lung. Lehnert, B.E., Morrow, P.E. Journal of toxicology and environmental health. (1985) [Pubmed]
  14. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. Jendelová, P., Herynek, V., Urdzíková, L., Glogarová, K., Kroupová, J., Andersson, B., Bryja, V., Burian, M., Hájek, M., Syková, E. J. Neurosci. Res. (2004) [Pubmed]
  15. An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. Manninger, S.P., Muldoon, L.L., Nesbit, G., Murillo, T., Jacobs, P.M., Neuwelt, E.A. AJNR. American journal of neuroradiology. (2005) [Pubmed]
  16. In vivo animal tests of an artifact-free contrast agent for gastrointestinal MRI. Briggs, R.W., Wu, Z., Mladinich, C.R., Stoupis, C., Gauger, J., Liebig, T., Ros, P.R., Ballinger, J.R., Kubilis, P. Magnetic resonance imaging. (1997) [Pubmed]
  17. Superparamagnetic iron oxide for liver imaging. Comparison among three different preparations. Bach-Gansmo, T., Fahlvik, A.K., Ericsson, A., Hemmingsson, A. Investigative radiology. (1994) [Pubmed]
  18. Selective uptake of iron oxide by rabbit conjunctival lymphoid follicles. Astley, R.A., Chodosh, J. Cornea (2005) [Pubmed]
  19. Probing the cytochrome P450-like reactivity of high-valent oxo iron intermediates in the gas phase. Crestoni, M.E., Fornarini, S. Inorganic chemistry. (2005) [Pubmed]
  20. Generation of oxoiron (IV) tetramesitylporphyrin pi-cation radical complexes by m-CPBA oxidation of ferric tetramesitylporphyrin derivatives in butyronitrile at - 78 degrees C. Evidence for the formation of six-coordinate oxoiron (IV) tetramesitylporphyrin pi-cation radical complexes FeIV = O(tmp*)X (X = Cl-, Br-), by Mössbauer and X-ray absorption spectroscopy. Wolter, T., Meyer-Klaucke, W., Müther, M., Mandon, D., Winkler, H., Trautwein, A.X., Weiss, R. J. Inorg. Biochem. (2000) [Pubmed]
  21. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. Lo, C.Y., Chen, W.Y., Chen, C.T., Chen, Y.C. J. Proteome Res. (2007) [Pubmed]
  22. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. Frimpong, R.A., Fraser, S., Zach Hilt, J. Journal of biomedical materials research. Part A (2007) [Pubmed]
  23. LHRH-conjugated Magnetic Iron Oxide Nanoparticles for Detection of Breast Cancer Metastases. Leuschner, C., Kumar, C.S., Hansel, W., Soboyejo, W., Zhou, J., Hormes, J. Breast Cancer Res. Treat. (2006) [Pubmed]
  24. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Choi, H., Choi, S.R., Zhou, R., Kung, H.F., Chen, I.W. Academic radiology. (2004) [Pubmed]
  25. Influence of iron (56Fe2O3 or 54Fe2O3) in the upregulation of cytochrome P4501A1 by benzo[a]pyrene in the respiratory tract of Sprague-Dawley rats. Garçon, G., Gosset, P., Maunit, B., Zerimech, F., Creusy, C., Muller, J.F., Shirali, P. Journal of applied toxicology : JAT. (2004) [Pubmed]
  26. Liver-lesion tissue contrast on MR images: effect of iron oxide concentration and magnetic field strength. Thickman, D., Hendrick, R.E., Jerjian, K.A., Schanker, C.S. Radiology. (1990) [Pubmed]
  27. The influence of MR field strength on the detection of focal liver lesions with superparamagnetic iron oxide. Deckers, F., Corthouts, B., Nackaerts, Y., Ozsarlak, O., Parizel, P.M., De Schepper, A.M. European radiology. (1997) [Pubmed]
  28. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Wang, Y.X., Hussain, S.M., Krestin, G.P. European radiology. (2001) [Pubmed]
  29. Surface charge properties of Fe2O3 in aqueous and alcoholic mixed solvents. Mustafa, S., Tasleem, S., Naeem, A. Journal of colloid and interface science. (2004) [Pubmed]
  30. CMR 2005: 9.06: Iron oxide nanoparticles as a cell labeling contrast agent for non-invasive long-term cell therapy monitoring by MRI: an abdominal aortic aneurysm model. Rivi??re, C., Deux, J.F., Dai, J., Gazeau, F., M??ric, P., Roger, J., Boudgh??ne, F., Allaire, E., Letourneur, D. Contrast media & molecular imaging (2006) [Pubmed]
 
WikiGenes - Universities