The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AGN-PC-006AZP     [3,4,5-trihydroxy-6- (hydroxymethyl)oxan-2...

Synonyms: SureCN721178, NSC-44138, NSC44138, CTK8H9455, AR-1C5017, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of cori ester

 

High impact information on cori ester

  • High resolution studies on the crystal structure of glycogen phosphorylase b have identified the catalytic site to which the substrate glucose-1-phosphate binds strongly with some local conformational changes [5].
  • Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate, which enters glycolysis to fulfill the energetic requirements of the organism [6].
  • Communication between the regulator-binding sites and the active site is both subtle and complex and involves several distinct regions of the enzyme including the N-terminus, the glucose-1-phosphate-binding site, and the ATP-binding site [7].
  • To determine the molecular basis of these defects, we have cloned the CYT1 gene by a map-based approach and found that it encodes mannose-1-phosphate guanylyltransferase [8].
  • Parafusin contains two types of phosphorylation sites: one where glucose 1-phosphate is added by an alpha-glucose-1-phosphate phosphotransferase and removed by a phosphodiesterase and one where phosphate from ATP is added directly to a serine residue by a protein kinase and removed by a phosphatase [9].
 

Chemical compound and disease context of cori ester

 

Biological context of cori ester

  • Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis [8].
  • Together, these data point to a (developmental) function independent of mannose-1-P synthesis, whereby the normal knockout phenotype, despite the stringent conservation in phylogeny, could be explained by a critical function under as-yet-unidentified challenge conditions [15].
  • The lack of inhibition by low concentrations of Li+ and high concentrations of Mg2+ and the high rates of hydrolysis of glucose-1-phosphate and p-nitrophenylphosphate are the most pronounced differences between the archaeal inositol monophosphatase and those from other sources [16].
  • The reconstructed mycarose operon contained the seven genes coding for the enzymes that convert glucose-1-phosphate (G-1-P) to TDP-L-mycarose, a 6dEB mycarosyl transferase, and a 6dEB 6-hydroxylase [17].
  • The previously known genes, rfbK (phosphomannomutase) and rfbM (mannose-1-phosphate guanyltransferase), are part of the gene cluster for the O antigen [18].
 

Anatomical context of cori ester

 

Associations of cori ester with other chemical compounds

 

Gene context of cori ester

  • Congenital disorder of glycosylation Ia (CDGIa) is an autosomal recessive disease that is caused by mutations in the gene PMM2 encoding phosphomannomutase, an enzyme that synthesizes mannose-1-phosphate, an important intermediate for the N-glycan biosynthesis [28].
  • Overall, these data suggest that the elevated levels of phosphoglucomutase activity allow for the more efficient utilization of the limiting levels of glucose-1-phosphate that are present in the RAS2(val19) mutant [29].
  • These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p [30].
  • The periplasmic acid glucose-1-phosphatase (G-1-Pase) encoded by gene agp is necessary for the growth of Escherichia coli in a minimal medium containing glucose-1-phosphate (G-1-P) as the sole source of carbon [31].
  • The product of the agp gene was required for growth on glucose-1-phosphate as the sole carbon source, a function for which alkaline phosphatase or other acid phosphatases cannot substitute [32].
 

Analytical, diagnostic and therapeutic context of cori ester

References

  1. Purification, characterization, and high performance liquid chromatography assay of Salmonella glucose-1-phosphate cytidylyltransferase from the cloned rfbF gene. Lindqvist, L., Kaiser, R., Reeves, P.R., Lindberg, A.A. J. Biol. Chem. (1994) [Pubmed]
  2. An Escherichia coli protein that exhibits phosphohistidine phosphatase activity towards the HPt domain of the ArcB sensor involved in the multistep His-Asp phosphorelay. Ogino, T., Matsubara, M., Kato, N., Nakamura, Y., Mizuno, T. Mol. Microbiol. (1998) [Pubmed]
  3. Fermentation of glucose-1-phosphate: a screening test for fermentative Bacteroides species. Wilkins, T.D., Walker, C.B. Appl. Environ. Microbiol. (1976) [Pubmed]
  4. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. Ripio, M.T., Brehm, K., Lara, M., Suárez, M., Vázquez-Boland, J.A. J. Bacteriol. (1997) [Pubmed]
  5. Crystallographic studies on the activity of glycogen phosphorylase b. Weber, I.T., Johnson, L.N., Wilson, K.S., Yeates, D.G., Wild, D.L., Jenkins, J.A. Nature (1978) [Pubmed]
  6. Activation of human liver glycogen phosphorylase by alteration of the secondary structure and packing of the catalytic core. Rath, V.L., Ammirati, M., LeMotte, P.K., Fennell, K.F., Mansour, M.N., Danley, D.E., Hynes, T.R., Schulte, G.K., Wasilko, D.J., Pandit, J. Mol. Cell (2000) [Pubmed]
  7. Crystal structure of potato tuber ADP-glucose pyrophosphorylase. Jin, X., Ballicora, M.A., Preiss, J., Geiger, J.H. EMBO J. (2005) [Pubmed]
  8. Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Lukowitz, W., Nickle, T.C., Meinke, D.W., Last, R.L., Conklin, P.L., Somerville, C.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Carbohydrate cycling in signal transduction: parafusin, a phosphoglycoprotein and possible Ca(2+)-dependent transducer molecule in exocytosis in Paramecium. Subramanian, S.V., Satir, B.H. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  10. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Qian, W., Yu, C., Qin, H., Liu, X., Zhang, A., Johansen, I.E., Wang, D. Plant J. (2007) [Pubmed]
  11. Kinetic properties of Serratia marcescens adenosine 5'-diphosphate glucose pyrophosphorylase. Preiss, J., Crawford, K., Downey, J., Lammel, C., Greenberg, E. J. Bacteriol. (1976) [Pubmed]
  12. CpsE from type 2 Streptococcus pneumoniae catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit formation. Cartee, R.T., Forsee, W.T., Bender, M.H., Ambrose, K.D., Yother, J. J. Bacteriol. (2005) [Pubmed]
  13. The dnrM gene in Streptomyces peucetius contains a naturally occurring frameshift mutation that is suppressed by another locus outside of the daunorubicin-production gene cluster. Gallo, M.A., Ward, J., Hutchinson, C.R. Microbiology (Reading, Engl.) (1996) [Pubmed]
  14. Liver metabolism in cold hypoxia: a comparison of energy metabolism and glycolysis in cold-sensitive and cold-resistant mammals. Churchill, T.A., Cheetham, K.M., Simpkin, S., Green, C.J., Wang, L.C., Fuller, B.J. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. (1994) [Pubmed]
  15. The normal phenotype of Pmm1-deficient mice suggests that Pmm1 is not essential for normal mouse development. Cromphout, K., Vleugels, W., Heykants, L., Schollen, E., Keldermans, L., Sciot, R., D'Hooge, R., De Deyn, P.P., von Figura, K., Hartmann, D., Körner, C., Matthijs, G. Mol. Cell. Biol. (2006) [Pubmed]
  16. Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Chen, L., Roberts, M.F. Appl. Environ. Microbiol. (1998) [Pubmed]
  17. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Peirú, S., Menzella, H.G., Rodríguez, E., Carney, J., Gramajo, H. Appl. Environ. Microbiol. (2005) [Pubmed]
  18. The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster. Stevenson, G., Lee, S.J., Romana, L.K., Reeves, P.R. Mol. Gen. Genet. (1991) [Pubmed]
  19. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol. Srisomsap, C., Richardson, K.L., Jay, J.C., Marchase, R.B. J. Biol. Chem. (1989) [Pubmed]
  20. Energy metabolism in preconditioned and control myocardium: effect of total ischemia. Jennings, R.B., Murry, C.E., Reimer, K.A. J. Mol. Cell. Cardiol. (1991) [Pubmed]
  21. Hormonal regulation of the rate of the glycogen/glucose-1-phosphate cycle in skeletal muscle. Challiss, R.A., Crabtree, B., Newsholme, E.A. Eur. J. Biochem. (1987) [Pubmed]
  22. Problems in the diagnosis of transferase and galactokinase deficient galactosemia. Pesce, M.A., Bodourian, S.H. Ann. Clin. Lab. Sci. (1980) [Pubmed]
  23. The effect of glucose-1 phosphate calcium on the epiphyseal cartilage of the rat. Földes, I., Varga, S., Laczkó, J. Acta morphologica Academiae Scientiarum Hungaricae. (1975) [Pubmed]
  24. Targeted disruption of the mouse phosphomannomutase 2 gene causes early embryonic lethality. Thiel, C., Lübke, T., Matthijs, G., von Figura, K., Körner, C. Mol. Cell. Biol. (2006) [Pubmed]
  25. Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Hirata, Y., Andoh, T., Asahara, T., Kikuchi, A. Mol. Biol. Cell (2003) [Pubmed]
  26. Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. Lee, D.C., Cottrill, M.A., Forsberg, C.W., Jia, Z. J. Biol. Chem. (2003) [Pubmed]
  27. Significance of metal ions in galactose-1-phosphate uridylyltransferase: an essential structural zinc and a nonessential structural iron. Geeganage, S., Frey, P.A. Biochemistry (1999) [Pubmed]
  28. Defect of N-glycosylation is not directly related to congenital disorder of glycosylation Ia fibroblast sensitivity to staurosporine-induced cell death. Lavieu, G., Frénoy, J.P., Codogno, P., Botti, J. Pediatr. Res. (2005) [Pubmed]
  29. Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Howard, S.C., Deminoff, S.J., Herman, P.K. Curr. Genet. (2006) [Pubmed]
  30. Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae. Csutora, P., Strassz, A., Boldizsár, F., Németh, P., Sipos, K., Aiello, D.P., Bedwell, D.M., Miseta, A. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  31. Utilization of exogenous glucose-1-phosphate as a source of carbon or phosphate by Escherichia coli K12: respective roles of acid glucose-1-phosphatase, hexose-phosphate permease, phosphoglucomutase and alkaline phosphatase. Pradel, E., Boquet, P.L. Res. Microbiol. (1991) [Pubmed]
  32. Mapping of the Escherichia coli acid glucose-1-phosphatase gene agp and analysis of its expression in vivo by use of an agp-phoA protein fusion. Pradel, E., Boquet, P.L. J. Bacteriol. (1989) [Pubmed]
  33. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Conklin, P.L., Norris, S.R., Wheeler, G.L., Williams, E.H., Smirnoff, N., Last, R.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  34. Glucose, fructose, mannose and/or glucose-1-phosphate-releasing activity stains for glycosidases and glycosyltransferases in gels after isoelectric focusing. Mukasa, H., Tsumori, H., Uezono, Y. Electrophoresis (1994) [Pubmed]
  35. Stability of parenteral nutrition admixtures containing organic phosphates. Ronchera-Oms, C.L., Jiménez, N.V., Peidro, J. Clinical nutrition (Edinburgh, Scotland) (1995) [Pubmed]
  36. Purification, characterization and HPLC assay of Salmonella glucose-1-phosphate thymidylyl-transferase from the cloned rfbA gene. Lindquist, L., Kaiser, R., Reeves, P.R., Lindberg, A.A. Eur. J. Biochem. (1993) [Pubmed]
 
WikiGenes - Universities