The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Tenakrin     1,2,3,4-tetrahydroacridin-9- amine

Synonyms: Tacrinal, Romotal, Tacrine, Cognex, tha, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Romotal


Psychiatry related information on Romotal


High impact information on Romotal


Chemical compound and disease context of Romotal


Biological context of Romotal


Anatomical context of Romotal


Associations of Romotal with other chemical compounds


Gene context of Romotal


Analytical, diagnostic and therapeutic context of Romotal


  1. Pheniramine aminosalicylate overdosage. Reversal of delirium and choreiform movements with tacrine treatment. Mendelson, G. Arch. Neurol. (1977) [Pubmed]
  2. Enhancement of acetylcholine release by SA4503, a novel sigma 1 receptor agonist, in the rat brain. Kobayashi, T., Matsuno, K., Nakata, K., Mita, S. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  3. Effect of tetrahydroaminoacridine, a cholinesterase inhibitor, on cognitive performance following experimental brain injury. Pike, B.R., Hamm, R.J., Temple, M.D., Buck, D.L., Lyeth, B.G. J. Neurotrauma (1997) [Pubmed]
  4. SA4503, a novel cognitive enhancer, with sigma 1 receptor agonistic properties. Matsuno, K., Senda, T., Kobayashi, T., Okamoto, K., Nakata, K., Mita, S. Behav. Brain Res. (1997) [Pubmed]
  5. Genetic toxicity studies of 1,2,3,4-tetrahydro-9-acridinamine (tacrine). Zeiger, E., Erexson, G., Mortelmans, K., Thilagar, A. Mutat. Res. (1997) [Pubmed]
  6. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. Summers, W.K., Majovski, L.V., Marsh, G.M., Tachiki, K., Kling, A. N. Engl. J. Med. (1986) [Pubmed]
  7. Interaction of tetrahydroaminoacridine with acetylcholinesterase and butyrylcholinesterase. Berman, H.A., Leonard, K. Mol. Pharmacol. (1992) [Pubmed]
  8. Methanesulfonyl fluoride (MSF) blocks scopolamine-induced amnesia in rats. Palacios-Esquivel, R.L., Pacheco, G., Moss, D.E. Neurobiol. Aging (1993) [Pubmed]
  9. Tetrahydroaminoacridine antagonism to narcotic addiction. Albin, M.S., Orr, M.D., Bunegin, L., Henderson, P.A. Exp. Neurol. (1975) [Pubmed]
  10. Tetrahydroaminoacridine facilitates passive avoidance learning in rats with nucleus basalis magnocellularis lesions. Dokla, C.P., Parker, S.C., Thal, L.J. Neuropharmacology (1989) [Pubmed]
  11. Tacrine in Alzheimer's disease. Eagger, S.A., Levy, R., Sahakian, B.J. Lancet (1991) [Pubmed]
  12. Tetrahydroaminoacridine-induced ribosomal changes and inhibition of protein synthesis in rat hepatocyte suspensions. Fariss, M.W., Johnsen, S.A., Walton, L.P., Mumaw, V.R., Ray, S.D. Hepatology (1994) [Pubmed]
  13. The effect of tetrahydroaminoacridine (THA) on P300 in Alzheimer's disease. van Gool, W.A., Waardenburg, J., Meyjes, F.E., Weinstein, H.C., de Wilde, A. Biol. Psychiatry (1991) [Pubmed]
  14. SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. Recanatini, M., Cavalli, A., Belluti, F., Piazzi, L., Rampa, A., Bisi, A., Gobbi, S., Valenti, P., Andrisano, V., Bartolini, M., Cavrini, V. J. Med. Chem. (2000) [Pubmed]
  15. Measurement of cholinergic drug effects on memory in Alzheimer's disease. Brinkman, S.D., Gershon, S. Neurobiol. Aging (1983) [Pubmed]
  16. Effects of 5-hydroxytryptophan, oxotermorine, and tetrahydroaminoacridine on apomorphine-induced stereotypy. Calil, H.M., Nakano, S., Hollister, L.E. Psychopharmacology (Berl.) (1978) [Pubmed]
  17. D-cycloserine, a partial NMDA receptor-associated glycine-B site agonist, enhances reversal learning, but a cholinesterase inhibitor and nicotine has no effect. Riekkinen, P., Ikonen, S., Riekkinen, M. Neuroreport (1998) [Pubmed]
  18. ONO-1603, a potential antidementia drug, delays age-induced apoptosis and suppresses overexpression of glyceraldehyde-3-phosphate dehydrogenase in cultured central nervous system neurons. Katsube, N., Sunaga, K., Aishita, H., Chuang, D.M., Ishitani, R. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  19. Pharmacokinetics of tetrahydroaminoacridine: relations to clinical and biochemical effects in Alzheimer patients. Ahlin, A., Adem, A., Junthé, T., Ohman, G., Nybäck, H. International clinical psychopharmacology. (1992) [Pubmed]
  20. Cardiovascular effects of centrally injected tetrahydroaminoacridine in conscious normotensive rats. Savci, V., Gürün, M.S., Cavun, S., Ulus, I.H. Eur. J. Pharmacol. (1998) [Pubmed]
  21. Mechanisms of the tetrahydroaminoacridine effect on action potential and ion currents in myelinated axons. Elinder, F., Arhem, P. Eur. J. Pharmacol. (1991) [Pubmed]
  22. Anatomy of cholinesterase inhibition in Alzheimer's disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Mesulam, M.M., Geula, C., Morán, M.A. Ann. Neurol. (1987) [Pubmed]
  23. Inhibitory effect of 9-amino-1,2,3,4-tetrahydroacridine (THA) on the potassium current of rabbit sinoatrial node. Kotake, H., Hisatome, I., Matsuoka, S., Miyakoda, H., Hasegawa, J., Mashiba, H. Cardiovasc. Res. (1990) [Pubmed]
  24. Tetrahydroaminoacridine improves the spatial acquisition deficit produced by nucleus basalis lesions in rats. Kwo-On-Yuen, P.F., Mandel, R., Chen, A.D., Thal, L.J. Exp. Neurol. (1990) [Pubmed]
  25. Comparison of 4-aminopyridine and tetrahydroaminoacridine on basal forebrain neurons. Griffith, W.H., Sim, J.A. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  26. Tetrahydroaminoacridine, 3,4 diaminopyridine and physostigmine: direct comparison of effects on memory in aged primates. Bartus, R.T., Dean, R.L. Neurobiol. Aging (1988) [Pubmed]
  27. Inhibition of histamine-N-methyltransferase (HNMT) by fragments of 9-amino-1,2,3,4-tetrahydroacridine (tacrine) and by beta-carbolines. Cumming, P., Vincent, S.R. Biochem. Pharmacol. (1992) [Pubmed]
  28. Tetrahydroaminoacridine and D-cycloserine stimulate acquisition of water maze spatial navigation in aged rats. Aura, J., Riekkinen, M., Riekkinen, P. Eur. J. Pharmacol. (1998) [Pubmed]
  29. Acute effects of tetrahydroaminoacridine on beta-adrenoceptor-linked cyclic AMP accumulation in brain of young and middle-aged rats. Dierssen, M., Màrmol, F., Vivas, N.M., Clos, M.V., Gascón, S., Badia, A. Neurosci. Lett. (1991) [Pubmed]
  30. Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis. Carlier, P.R., Han, Y.F., Chow, E.S., Li, C.P., Wang, H., Lieu, T.X., Wong, H.S., Pang, Y.P. Bioorg. Med. Chem. (1999) [Pubmed]
  31. In vitro protection of acetylcholinesterase and butyrylcholinesterase by tetrahydroaminoacridine. Comparison with physostigmine. Galli, A., Mori, F., Gori, I., Lucherini, M. Biochem. Pharmacol. (1992) [Pubmed]
  32. Hypothermia induced by cholinomimetic drugs is blocked by galanin: possible involvement of ATP-sensitive K+ channels. Patel, S., Hutson, P.H. Eur. J. Pharmacol. (1994) [Pubmed]
  33. Pharmacological characterization of orally active cholinesterase inhibitory activity of Prunus persica L. Batsch in rats. Suh, S.J., Koo, B.S., Jin, U.H., Hwang, M.J., Lee, I.S., Kim, C.H. J. Mol. Neurosci. (2006) [Pubmed]
  34. Effect of 9-amino-2,3,5,6,7,8-hexahydro-1H-cyclopenta-(b)-quinoline monohydrate hydrochloride (NIK-247) on cholinergic enzyme activity in rats. Shibanoki, S., Ishii, Y., Kubo, T., Kogure, M., Asai, S., Ishikawa, K. Pharmacol. Biochem. Behav. (1991) [Pubmed]
  35. Molecular and genetic association of interleukin-6 in tacrine-induced hepatotoxicity. Carr, D.F., Alfirevic, A., Tugwood, J.D., Barratt, B.J., Sherwood, J., Smith, J., Pirmohamed, M., Park, B.K. Pharmacogenet. Genomics (2007) [Pubmed]
  36. Treatment of Alzheimer's disease with short- and long-term oral THA and lecithin: a double-blind study. Fitten, L.J., Perryman, K.M., Gross, P.L., Fine, H., Cummins, J., Marshall, C. The American journal of psychiatry. (1990) [Pubmed]
  37. Clinical pharmacokinetics of drugs for Alzheimer's disease. Parnetti, L. Clinical pharmacokinetics. (1995) [Pubmed]
  38. Potentiation by DSP-4 of EEG slowing and memory impairment in basal forebrain-lesioned rats. Abe, K., Horiuchi, M., Yoshimura, K. Eur. J. Pharmacol. (1997) [Pubmed]
  39. Tetrahydroaminoacridine increases m3-, but not m2-, muscarinic acetylcholine receptor mRNA levels in differentiating cerebellar granule cells. Sunaga, K., Chuang, D.M., Ishitani, R. Neurosci. Lett. (1993) [Pubmed]
WikiGenes - Universities