The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Betoptic     1-[4-[2-(cyclopropylmethoxy) ethyl]phenoxy]...

Synonyms: KERLEDEX, Betazolol, Kerlone, betaxolol, Betaxololum, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SL 75212

 

Psychiatry related information on SL 75212

 

High impact information on SL 75212

  • Results showed an increase of 13% and 8% in mean peak flow rate and forced expiratory volume in 1 s (FEV1), respectively, when using betaxolol; and of 14% and 11% when using dipivefrine [11].
  • We recruited 80 patients aged over 60 years, who were without a history of airways disease and already used timolol, into a randomised crossover study comparing the effects on spirometry and exercise tolerance of changing to betaxolol or dipivefrine therapy [11].
  • In the present experiments using single doses of antagonists that appeared to block 60% of beta 2- or beta 1-adrenergic receptors, it was found that the selective beta 2 antagonist ICI 118,551 was without effect on engram spread, whereas the selective beta 1 antagonist betaxolol inhibited the spread for at least 3 months [12].
  • Autoradiographic inhibition curves with betaxolol or ICI-118,551 demonstrated that both the sinoatrial node and the atrioventricular bundle had inhibition profiles similar to the surrounding myocytes (predominantly beta 1) but unlike the inhibition profiles of arterioles (predominantly beta 2) [13].
  • To delineate the distribution of beta-receptor subtypes in myocytic and vascular components of the heart, we incubated transmural sections of canine left ventricle with [125Iodo]cyanopindolol and selected concentrations of the beta 1-selective antagonist betaxolol or the beta 2-selective antagonist ICI 118,551 [14].
 

Chemical compound and disease context of SL 75212

 

Biological context of SL 75212

 

Anatomical context of SL 75212

  • The subtype-selective antagonists betaxolol (beta 1), practolol (beta 1), and zinterol (beta 2) compete for [125I]iodocyanopindolol-binding sites on intact myocytes in monophasic manners with dissociation constants of 46, 845, and 923 nM, respectively [22].
  • When the effective refractory period of the A-V node could be determined it was increased by betaxolol, whereas no significant electrophysiologic effects were observed in the atrium, the ventricle or the accessory pathway [5].
  • Inverse agonists, able to reduce basal intracellular cAMP levels, such as betaxolol and ICI118551, resulted in both increased plasma membrane receptor and increased diffuse intracellular staining [23].
  • Effects of betaxolol on light responses and membrane conductance in retinal ganglion cells [17].
  • CONCLUSIONS: Topically applied betaxolol was bioavailable to posterior ocular tissues, including the retina and optic nerve head, of patients with glaucoma and of normal cynomolgus monkeys [24].
 

Associations of SL 75212 with other chemical compounds

 

Gene context of SL 75212

 

Analytical, diagnostic and therapeutic context of SL 75212

  • beta-Adrenergic receptor subtypes were localized and differentiated in rat kidney slices by in vitro autoradiography using the nonselective beta-antagonist [125I]iodocyanopindolol in the presence of the selective agents betaxolol (beta 1) and zinterol (beta 2) [33].
  • An IV dose of 20 mg of betaxolol per 1.73 m2 body surface area (BSA) was followed by six daily oral doses [21].
  • To test this statement, 12 patients with mild to moderate hypertension performed a submaximal exercise test during treatment with placebo and after 3 and 24 months of monotherapy with betaxolol, 20 to 40 mg daily [34].
  • Sustained treatment of HEK293 cells stably expressing the constitutively active mutant (CAM) beta(2)-adrenoceptor-GFP with the inverse agonist betaxolol resulted in a marked up-regulation of the fusion protein that could be monitored by both fluorescence and immunoblotting of membrane fractions [23].
  • PURPOSE: To measure the concentration of betaxolol in tissues of humans with glaucoma and normal monkeys after topical administration [24].

References

  1. Myocardial infarction after ophthalmic betaxolol. Chamberlain, T.J. N. Engl. J. Med. (1989) [Pubmed]
  2. Betaxolol and stuttering. Burris, J.F., Riggs, M.C., Brinkley, R.R. Lancet (1990) [Pubmed]
  3. Comparison of the antihypertensive effects of betaxolol and chlorthalidone as monotherapy and in combination. Burris, J.F., Davidov, M.E., Jenkins, P., Rofman, B., Ginsberg, D., Rosenbaum, R., Ryan, J.R., Jain, A.K., Mroczek, W.J. Arch. Intern. Med. (1989) [Pubmed]
  4. AV nodal reentrant tachycardia using three different AV nodal pathways. Kühlkamp, V., Haasis, R., Seipel, L. Eur. Heart J. (1990) [Pubmed]
  5. Comparison of the effects of intravenous and oral betaxolol on antegrade and retrograde conduction in patients with atrioventricular nodal reentrant and atrioventricular reentrant tachycardia. Kühlkamp, V., Ickrath, O., Haasis, R., Seipel, L. Eur. Heart J. (1989) [Pubmed]
  6. Comparison of propranolol, sotalol, and betaxolol in the treatment of neuroleptic-induced akathisia. Dupuis, B., Catteau, J., Dumon, J.P., Libert, C., Petit, H. The American journal of psychiatry. (1987) [Pubmed]
  7. Alpha-1-noradrenergic neurotransmission, corticosterone, and behavioral depression. Stone, E.A., Quartermain, D. Biol. Psychiatry (1999) [Pubmed]
  8. The effect of a week's beta-adrenoceptor antagonism on daytime heart-rates, subjective responses to exercise, and physical activity in normal subjects. Patrick, J.M., Wharrad, H.J., Wilson, C.G., Birmingham, A.T. British journal of clinical pharmacology. (1985) [Pubmed]
  9. Human sleep EEG following the 5-HT1A antagonist pindolol: possible disinhibition of raphe neuron activity. Seifritz, E., Stahl, S.M., Gillin, J.C. Brain Res. (1997) [Pubmed]
  10. Betaxolol in anxiety disorders. Swartz, C.M. Annals of clinical psychiatry : official journal of the American Academy of Clinical Psychiatrists. (1998) [Pubmed]
  11. Avoiding unsuspected respiratory side-effects of topical timolol with cardioselective or sympathomimetic agents. Diggory, P., Cassels-Brown, A., Vail, A., Abbey, L.M., Hillman, J.S. Lancet (1995) [Pubmed]
  12. Blockade of beta 1- but not of beta 2-adrenergic receptors replicates propranolol's suppression of the cerebral spread of an engram in mice. Flexner, J.B., Flexner, L.B., Church, A.C., Rainbow, T.C., Brunswick, D.J. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  13. Autoradiographic characterization of beta-adrenergic receptor subtype in the canine conduction system. Muntz, K.H. Circ. Res. (1992) [Pubmed]
  14. Delineation of the distribution of beta-adrenergic receptor subtypes in canine myocardium. Murphree, S.S., Saffitz, J.E. Circ. Res. (1988) [Pubmed]
  15. Population dose versus response of betaxolol and atenolol: a comparison of potency and variability. Sambol, N.C., Sheiner, L.B. Clin. Pharmacol. Ther. (1991) [Pubmed]
  16. Ocular betaxolol. A review of its pharmacological properties, and therapeutic efficacy in glaucoma and ocular hypertension. Buckley, M.M., Goa, K.L., Clissold, S.P. Drugs (1990) [Pubmed]
  17. Effects of betaxolol on light responses and membrane conductance in retinal ganglion cells. Gross, R.L., Hensley, S.H., Gao, F., Yang, X.L., Dai, S.C., Wu, S.M. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  18. Levobunolol and betaxolol. A double-masked controlled comparison of efficacy and safety in patients with elevated intraocular pressure. Long, D.A., Johns, G.E., Mullen, R.S., Bowe, R.G., Alexander, D., Epstein, D.L., Weiss, M.J., Masi, R.J., Charap, A.D., Eto, C.Y. Ophthalmology (1988) [Pubmed]
  19. Effect of beta-blockade on right ventricular performance in patients with and without right ventricular dysfunction due to coronary artery disease. Singh, A., Alpert, M.A., Sanfelippo, J.F., Mukerji, V., Villarreal, D., Holmes, R.A., Sunderrajan, E.V., Morgan, R.J. Arch. Intern. Med. (1986) [Pubmed]
  20. Generation and analysis of constitutively active and physically destabilized mutants of the human beta(1)-adrenoceptor. McLean, A.J., Zeng, F.Y., Behan, D., Chalmers, D., Milligan, G. Mol. Pharmacol. (2002) [Pubmed]
  21. Betaxolol kinetics in hypertensive children with normal and abnormal renal function. Palminteri, R., Assael, B.M., Bianchetti, G., Gomeni, R., Claris-Appiani, A., Edefonti, A., Morselli, P.L. Clin. Pharmacol. Ther. (1984) [Pubmed]
  22. Direct analysis of beta-adrenergic receptor subtypes on intact adult ventricular myocytes of the rat. Buxton, I.L., Brunton, L.L. Circ. Res. (1985) [Pubmed]
  23. Visualizing differences in ligand regulation of wild-type and constitutively active mutant beta(2)-adrenoceptor-green fluorescent protein fusion proteins. McLean, A.J., Bevan, N., Rees, S., Milligan, G. Mol. Pharmacol. (1999) [Pubmed]
  24. Concentrations of betaxolol in ocular tissues of patients with glaucoma and normal monkeys after 1 month of topical ocular administration. Holló, G., Whitson, J.T., Faulkner, R., McCue, B., Curtis, M., Wieland, H., Chastain, J., Sanders, M., DeSantis, L., Przydryga, J., Dahlin, D.C. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  25. cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortex in vivo: role of beta 1-adrenoceptors. Pascoli, V., Valjent, E., Corbillé, A.G., Corvol, J.C., Tassin, J.P., Girault, J.A., Hervé, D. Mol. Pharmacol. (2005) [Pubmed]
  26. Inverse agonist-induced up-regulation of the human beta2-adrenoceptor in transfected neuroblastoma X glioma hybrid cells. MacEwan, D.J., Milligan, G. Mol. Pharmacol. (1996) [Pubmed]
  27. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Samama, P., Pei, G., Costa, T., Cotecchia, S., Lefkowitz, R.J. Mol. Pharmacol. (1994) [Pubmed]
  28. Topically applied betaxolol attenuates ischaemia-induced effects to the rat retina and stimulates BDNF mRNA. Wood, J.P., DeSantis, L., Chao, H.M., Osborne, N.N. Exp. Eye Res. (2001) [Pubmed]
  29. Betaxolol inhibits extracellular signal-regulated kinase and P70S6 kinase activities and gene expressions of platelet-derived growth factor A-chain and transforming growth factor-beta1 in Dahl salt-sensitive hypertensive rats. Kobayashi, N., Nakano, S., Mori, Y., Mita, S., Kobayashi, T., Honda, T., Tsubokou, Y., Matsuoka, H. Hypertens. Res. (2002) [Pubmed]
  30. Change in endothelial nitric oxide synthase in the rat retina following transient ischemia. Cheon, E.W., Park, C.H., Kang, S.S., Cho, G.J., Yoo, J.M., Song, J.K., Choi, W.S. Neuroreport (2003) [Pubmed]
  31. Beta1-adrenergic receptor polymorphisms and clinical efficacy of betaxolol hydrochloride in normal volunteers. Schwartz, S.G., Puckett, B.J., Allen, R.C., Castillo, I.G., Leffler, C.T. Ophthalmology (2005) [Pubmed]
  32. Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. Kreiss, D.S., Lucki, I. J. Pharmacol. Exp. Ther. (1994) [Pubmed]
  33. Localization of beta 1- and beta 2-adrenergic receptors in rat kidney by autoradiography. Healy, D.P., Münzel, P.A., Insel, P.A. Circ. Res. (1985) [Pubmed]
  34. Exercise during therapeutic beta-blockade: a two-year study in hypertensive patients. Frisk-Holmberg, M., Ström, G. Clin. Pharmacol. Ther. (1986) [Pubmed]
 
WikiGenes - Universities